qmk_firmware/keyboards/helix/rev2/custom/matrix.c
Ryan bd70f5261c
Remove matrix_key_count() (#16603)
* Remove `matrix_key_count()`

* Remove `matrix_bitpop()`
2022-03-10 12:18:07 +00:00

342 lines
8.0 KiB
C

/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "split_util.h"
#include "quantum.h"
#ifdef USE_MATRIX_I2C
# include "i2c.h"
#else // USE_SERIAL
# include "split_scomm.h"
#endif
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
#define ERROR_DISCONNECT_COUNT 5
static uint8_t debouncing = DEBOUNCE;
static const int ROWS_PER_HAND = MATRIX_ROWS/2;
static uint8_t error_count = 0;
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
static uint8_t matrix_master_scan(void);
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
split_keyboard_setup();
// initialize row and col
unselect_rows();
init_cols();
setPinOutput(B0);
setPinOutput(D5);
writePinHigh(B0);
writePinHigh(D5);
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
matrix_init_quantum();
}
uint8_t _matrix_scan(void)
{
// Right hand is stored after the left in the matirx so, we need to offset it
int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
select_row(i);
_delay_us(30); // without this wait read unstable value.
matrix_row_t cols = read_cols();
if (matrix_debouncing[i+offset] != cols) {
matrix_debouncing[i+offset] = cols;
debouncing = DEBOUNCE;
}
unselect_rows();
}
if (debouncing) {
if (--debouncing) {
_delay_ms(1);
} else {
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
matrix[i+offset] = matrix_debouncing[i+offset];
}
}
}
return 1;
}
#ifdef USE_MATRIX_I2C
// Get rows from other half over i2c
int i2c_transaction(void) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
if (err) goto i2c_error;
// start of matrix stored at 0x00
err = i2c_master_write(0x00);
if (err) goto i2c_error;
// Start read
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
if (err) goto i2c_error;
if (!err) {
int i;
for (i = 0; i < ROWS_PER_HAND-1; ++i) {
matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
}
matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
i2c_master_stop();
} else {
i2c_error: // the cable is disconnceted, or something else went wrong
i2c_reset_state();
return err;
}
return 0;
}
#else // USE_SERIAL
int serial_transaction(int master_changed) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
#ifdef SERIAL_USE_MULTI_TRANSACTION
int ret=serial_update_buffers(master_changed);
#else
int ret=serial_update_buffers();
#endif
if (ret ) {
if(ret==2) writePinLow(B0);
return 1;
}
writePinHigh(B0);
memcpy(&matrix[slaveOffset],
(void *)serial_slave_buffer, sizeof(serial_slave_buffer));
return 0;
}
#endif
uint8_t matrix_scan(void)
{
if (is_helix_master()) {
matrix_master_scan();
}else{
matrix_slave_scan();
int offset = (isLeftHand) ? ROWS_PER_HAND : 0;
memcpy(&matrix[offset],
(void *)serial_master_buffer, sizeof(serial_master_buffer));
matrix_scan_quantum();
}
return 1;
}
uint8_t matrix_master_scan(void) {
int ret = _matrix_scan();
int mchanged = 1;
#ifndef KEYBOARD_helix_rev1
int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
#ifdef USE_MATRIX_I2C
// for (int i = 0; i < ROWS_PER_HAND; ++i) {
/* i2c_slave_buffer[i] = matrix[offset+i]; */
// i2c_slave_buffer[i] = matrix[offset+i];
// }
#else // USE_SERIAL
#ifdef SERIAL_USE_MULTI_TRANSACTION
mchanged = memcmp((void *)serial_master_buffer,
&matrix[offset], sizeof(serial_master_buffer));
#endif
memcpy((void *)serial_master_buffer,
&matrix[offset], sizeof(serial_master_buffer));
#endif
#endif
#ifdef USE_MATRIX_I2C
if( i2c_transaction() ) {
#else // USE_SERIAL
if( serial_transaction(mchanged) ) {
#endif
// turn on the indicator led when halves are disconnected
writePinLow(D5);
error_count++;
if (error_count > ERROR_DISCONNECT_COUNT) {
// reset other half if disconnected
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[slaveOffset+i] = 0;
}
}
} else {
// turn off the indicator led on no error
writePinHigh(D5);
error_count = 0;
}
matrix_scan_quantum();
return ret;
}
void matrix_slave_scan(void) {
_matrix_scan();
int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
#ifdef USE_MATRIX_I2C
for (int i = 0; i < ROWS_PER_HAND; ++i) {
/* i2c_slave_buffer[i] = matrix[offset+i]; */
i2c_slave_buffer[i] = matrix[offset+i];
}
#else // USE_SERIAL
#ifdef SERIAL_USE_MULTI_TRANSACTION
int change = 0;
#endif
for (int i = 0; i < ROWS_PER_HAND; ++i) {
#ifdef SERIAL_USE_MULTI_TRANSACTION
if( serial_slave_buffer[i] != matrix[offset+i] )
change = 1;
#endif
serial_slave_buffer[i] = matrix[offset+i];
}
#ifdef SERIAL_USE_MULTI_TRANSACTION
slave_buffer_change_count += change;
#endif
#endif
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
print_hex8(row); print(": ");
print_bin_reverse16(matrix_get_row(row));
print("\n");
}
}
static void init_cols(void)
{
for(int x = 0; x < MATRIX_COLS; x++) {
_SFR_IO8((col_pins[x] >> 4) + 1) &= ~_BV(col_pins[x] & 0xF);
_SFR_IO8((col_pins[x] >> 4) + 2) |= _BV(col_pins[x] & 0xF);
}
}
static matrix_row_t read_cols(void)
{
matrix_row_t result = 0;
for(int x = 0; x < MATRIX_COLS; x++) {
result |= (_SFR_IO8(col_pins[x] >> 4) & _BV(col_pins[x] & 0xF)) ? 0 : (1 << x);
}
return result;
}
static void unselect_rows(void)
{
for(int x = 0; x < ROWS_PER_HAND; x++) {
_SFR_IO8((row_pins[x] >> 4) + 1) &= ~_BV(row_pins[x] & 0xF);
_SFR_IO8((row_pins[x] >> 4) + 2) |= _BV(row_pins[x] & 0xF);
}
}
static void select_row(uint8_t row)
{
_SFR_IO8((row_pins[row] >> 4) + 1) |= _BV(row_pins[row] & 0xF);
_SFR_IO8((row_pins[row] >> 4) + 2) &= ~_BV(row_pins[row] & 0xF);
}