mirror of
https://github.com/qmk/qmk_firmware.git
synced 2025-01-05 08:59:54 +00:00
286 lines
9.0 KiB
C
286 lines
9.0 KiB
C
/*
|
|
LUFA Library
|
|
Copyright (C) Dean Camera, 2017.
|
|
|
|
dean [at] fourwalledcubicle [dot] com
|
|
www.lufa-lib.org
|
|
*/
|
|
|
|
/*
|
|
Copyright 2017 Dean Camera (dean [at] fourwalledcubicle [dot] com)
|
|
|
|
Permission to use, copy, modify, distribute, and sell this
|
|
software and its documentation for any purpose is hereby granted
|
|
without fee, provided that the above copyright notice appear in
|
|
all copies and that both that the copyright notice and this
|
|
permission notice and warranty disclaimer appear in supporting
|
|
documentation, and that the name of the author not be used in
|
|
advertising or publicity pertaining to distribution of the
|
|
software without specific, written prior permission.
|
|
|
|
The author disclaims all warranties with regard to this
|
|
software, including all implied warranties of merchantability
|
|
and fitness. In no event shall the author be liable for any
|
|
special, indirect or consequential damages or any damages
|
|
whatsoever resulting from loss of use, data or profits, whether
|
|
in an action of contract, negligence or other tortious action,
|
|
arising out of or in connection with the use or performance of
|
|
this software.
|
|
*/
|
|
|
|
/** \file
|
|
*
|
|
* Main source file for the KeyboardHostWithParser demo. This file contains the main tasks of
|
|
* the demo and is responsible for the initial application hardware configuration.
|
|
*/
|
|
|
|
#include "KeyboardHostWithParser.h"
|
|
|
|
/** Main program entry point. This routine configures the hardware required by the application, then
|
|
* enters a loop to run the application tasks in sequence.
|
|
*/
|
|
int main(void)
|
|
{
|
|
SetupHardware();
|
|
|
|
puts_P(PSTR(ESC_FG_CYAN "Keyboard HID Parser Host Demo running.\r\n" ESC_FG_WHITE));
|
|
|
|
LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
|
|
GlobalInterruptEnable();
|
|
|
|
for (;;)
|
|
{
|
|
KeyboardHost_Task();
|
|
|
|
USB_USBTask();
|
|
}
|
|
}
|
|
|
|
/** Configures the board hardware and chip peripherals for the demo's functionality. */
|
|
void SetupHardware(void)
|
|
{
|
|
#if (ARCH == ARCH_AVR8)
|
|
/* Disable watchdog if enabled by bootloader/fuses */
|
|
MCUSR &= ~(1 << WDRF);
|
|
wdt_disable();
|
|
|
|
/* Disable clock division */
|
|
clock_prescale_set(clock_div_1);
|
|
#endif
|
|
|
|
/* Hardware Initialization */
|
|
Serial_Init(9600, false);
|
|
LEDs_Init();
|
|
USB_Init();
|
|
|
|
/* Create a stdio stream for the serial port for stdin and stdout */
|
|
Serial_CreateStream(NULL);
|
|
}
|
|
|
|
/** Event handler for the USB_DeviceAttached event. This indicates that a device has been attached to the host, and
|
|
* starts the library USB task to begin the enumeration and USB management process.
|
|
*/
|
|
void EVENT_USB_Host_DeviceAttached(void)
|
|
{
|
|
puts_P(PSTR(ESC_FG_GREEN "Device Attached.\r\n" ESC_FG_WHITE));
|
|
LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING);
|
|
}
|
|
|
|
/** Event handler for the USB_DeviceUnattached event. This indicates that a device has been removed from the host, and
|
|
* stops the library USB task management process.
|
|
*/
|
|
void EVENT_USB_Host_DeviceUnattached(void)
|
|
{
|
|
puts_P(PSTR(ESC_FG_GREEN "\r\nDevice Unattached.\r\n" ESC_FG_WHITE));
|
|
LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
|
|
}
|
|
|
|
/** Event handler for the USB_DeviceEnumerationComplete event. This indicates that a device has been successfully
|
|
* enumerated by the host and is now ready to be used by the application.
|
|
*/
|
|
void EVENT_USB_Host_DeviceEnumerationComplete(void)
|
|
{
|
|
puts_P(PSTR("Getting Config Data.\r\n"));
|
|
|
|
uint8_t ErrorCode;
|
|
|
|
/* Get and process the configuration descriptor data */
|
|
if ((ErrorCode = ProcessConfigurationDescriptor()) != SuccessfulConfigRead)
|
|
{
|
|
if (ErrorCode == ControlError)
|
|
puts_P(PSTR(ESC_FG_RED "Control Error (Get Configuration).\r\n"));
|
|
else
|
|
puts_P(PSTR(ESC_FG_RED "Invalid Device.\r\n"));
|
|
|
|
printf_P(PSTR(" -- Error Code: %d\r\n" ESC_FG_WHITE), ErrorCode);
|
|
|
|
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
|
|
return;
|
|
}
|
|
|
|
/* Set the device configuration to the first configuration (rarely do devices use multiple configurations) */
|
|
if ((ErrorCode = USB_Host_SetDeviceConfiguration(1)) != HOST_SENDCONTROL_Successful)
|
|
|
|
{
|
|
puts_P(PSTR(ESC_FG_RED "Control Error (Set Configuration).\r\n"));
|
|
printf_P(PSTR(" -- Error Code: %d\r\n" ESC_FG_WHITE), ErrorCode);
|
|
|
|
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
|
|
return;
|
|
}
|
|
|
|
printf_P(PSTR("Processing HID Report (Size %d Bytes).\r\n"), HIDReportSize);
|
|
|
|
/* Get and process the device's first HID report descriptor */
|
|
if ((ErrorCode = GetHIDReportData()) != ParseSuccessful)
|
|
{
|
|
puts_P(PSTR(ESC_FG_RED "Report Parse Error.\r\n"));
|
|
|
|
if (!(HIDReportInfo.TotalReportItems))
|
|
puts_P(PSTR("Not a valid Keyboard." ESC_FG_WHITE));
|
|
else
|
|
printf_P(PSTR(" -- Error Code: %d\r\n" ESC_FG_WHITE), ErrorCode);
|
|
|
|
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
|
|
USB_Host_SetDeviceConfiguration(0);
|
|
return;
|
|
}
|
|
|
|
puts_P(PSTR("Keyboard Enumerated.\r\n"));
|
|
LEDs_SetAllLEDs(LEDMASK_USB_READY);
|
|
}
|
|
|
|
/** Event handler for the USB_HostError event. This indicates that a hardware error occurred while in host mode. */
|
|
void EVENT_USB_Host_HostError(const uint8_t ErrorCode)
|
|
{
|
|
USB_Disable();
|
|
|
|
printf_P(PSTR(ESC_FG_RED "Host Mode Error\r\n"
|
|
" -- Error Code %d\r\n" ESC_FG_WHITE), ErrorCode);
|
|
|
|
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
|
|
for(;;);
|
|
}
|
|
|
|
/** Event handler for the USB_DeviceEnumerationFailed event. This indicates that a problem occurred while
|
|
* enumerating an attached USB device.
|
|
*/
|
|
void EVENT_USB_Host_DeviceEnumerationFailed(const uint8_t ErrorCode,
|
|
const uint8_t SubErrorCode)
|
|
{
|
|
printf_P(PSTR(ESC_FG_RED "Dev Enum Error\r\n"
|
|
" -- Error Code %d\r\n"
|
|
" -- Sub Error Code %d\r\n"
|
|
" -- In State %d\r\n" ESC_FG_WHITE), ErrorCode, SubErrorCode, USB_HostState);
|
|
|
|
LEDs_SetAllLEDs(LEDMASK_USB_ERROR);
|
|
}
|
|
|
|
/** Task to read in and processes the next report from the attached device, displaying the report
|
|
* contents on the board LEDs and via the serial port.
|
|
*/
|
|
void KeyboardHost_Task(void)
|
|
{
|
|
if (USB_HostState != HOST_STATE_Configured)
|
|
return;
|
|
|
|
/* Select and unfreeze keyboard data pipe */
|
|
Pipe_SelectPipe(KEYBOARD_DATA_IN_PIPE);
|
|
Pipe_Unfreeze();
|
|
|
|
/* Check to see if a packet has been received */
|
|
if (Pipe_IsINReceived())
|
|
{
|
|
/* Check if data has been received from the attached keyboard */
|
|
if (Pipe_IsReadWriteAllowed())
|
|
{
|
|
/* Create buffer big enough for the report */
|
|
uint8_t KeyboardReport[Pipe_BytesInPipe()];
|
|
|
|
/* Load in the keyboard report */
|
|
Pipe_Read_Stream_LE(KeyboardReport, Pipe_BytesInPipe(), NULL);
|
|
|
|
/* Process the read in keyboard report from the device */
|
|
ProcessKeyboardReport(KeyboardReport);
|
|
}
|
|
|
|
/* Clear the IN endpoint, ready for next data packet */
|
|
Pipe_ClearIN();
|
|
}
|
|
|
|
/* Freeze keyboard data pipe */
|
|
Pipe_Freeze();
|
|
}
|
|
|
|
/** Processes a read HID report from an attached keyboard, extracting out elements via the HID parser results
|
|
* as required and prints pressed characters to the serial port. Each time a key is typed, a board LED is toggled.
|
|
*
|
|
* \param[in] KeyboardReport Pointer to a HID report from an attached keyboard device
|
|
*/
|
|
void ProcessKeyboardReport(uint8_t* KeyboardReport)
|
|
{
|
|
/* Check each HID report item in turn, looking for keyboard scan code reports */
|
|
for (uint8_t ReportNumber = 0; ReportNumber < HIDReportInfo.TotalReportItems; ReportNumber++)
|
|
{
|
|
/* Create a temporary item pointer to the next report item */
|
|
HID_ReportItem_t* ReportItem = &HIDReportInfo.ReportItems[ReportNumber];
|
|
|
|
/* Check if the current report item is a keyboard scan-code */
|
|
if ((ReportItem->Attributes.Usage.Page == USAGE_PAGE_KEYBOARD) &&
|
|
(ReportItem->Attributes.BitSize == 8) &&
|
|
(ReportItem->Attributes.Logical.Maximum > 1) &&
|
|
(ReportItem->ItemType == HID_REPORT_ITEM_In))
|
|
{
|
|
/* Retrieve the keyboard scan-code from the report data retrieved from the device */
|
|
bool FoundData = USB_GetHIDReportItemInfo(KeyboardReport, ReportItem);
|
|
|
|
/* For multi-report devices - if the requested data was not in the issued report, continue */
|
|
if (!(FoundData))
|
|
continue;
|
|
|
|
/* Key code is an unsigned char in length, cast to the appropriate type */
|
|
uint8_t KeyCode = (uint8_t)ReportItem->Value;
|
|
|
|
/* If scan-code is non-zero, a key is being pressed */
|
|
if (KeyCode)
|
|
{
|
|
/* Toggle status LED to indicate keypress */
|
|
LEDs_ToggleLEDs(LEDS_LED2);
|
|
|
|
char PressedKey = 0;
|
|
|
|
/* Retrieve pressed key character if alphanumeric */
|
|
if ((KeyCode >= HID_KEYBOARD_SC_A) && (KeyCode <= HID_KEYBOARD_SC_Z))
|
|
{
|
|
PressedKey = (KeyCode - HID_KEYBOARD_SC_A) + 'A';
|
|
}
|
|
else if ((KeyCode >= HID_KEYBOARD_SC_1_AND_EXCLAMATION) &
|
|
(KeyCode < HID_KEYBOARD_SC_0_AND_CLOSING_PARENTHESIS))
|
|
{
|
|
PressedKey = (KeyCode - HID_KEYBOARD_SC_1_AND_EXCLAMATION) + '1';
|
|
}
|
|
else if (KeyCode == HID_KEYBOARD_SC_0_AND_CLOSING_PARENTHESIS)
|
|
{
|
|
PressedKey = '0';
|
|
}
|
|
else if (KeyCode == HID_KEYBOARD_SC_SPACE)
|
|
{
|
|
PressedKey = ' ';
|
|
}
|
|
else if (KeyCode == HID_KEYBOARD_SC_ENTER)
|
|
{
|
|
PressedKey = '\n';
|
|
}
|
|
|
|
/* Print the pressed key character out through the serial port if valid */
|
|
if (PressedKey)
|
|
putchar(PressedKey);
|
|
}
|
|
|
|
/* Once a scan-code is found, stop scanning through the report items */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|