0
0
mirror of https://github.com/qmk/qmk_firmware.git synced 2025-01-01 14:29:54 +00:00
qmk_firmware/quantum/matrix.c
2016-06-17 22:09:59 -04:00

252 lines
6.6 KiB
C

/*
Copyright 2012 Jun Wako
Copyright 2014 Jack Humbert
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#ifdef MATRIX_HAS_GHOST
# error "The universal matrix.c file cannot be used for this keyboard."
#endif
#ifndef DEBOUNCING_DELAY
# define DEBOUNCING_DELAY 5
#endif
static const io_pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const io_pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
/* matrix state */
#if DIODE_DIRECTION == COL2ROW
static matrix_row_t matrix[MATRIX_ROWS];
#else
static matrix_col_t matrix[MATRIX_COLS];
#endif
static int8_t debouncing_delay = -1;
#if DIODE_DIRECTION == COL2ROW
static void toggle_row(uint8_t row);
static matrix_row_t read_cols(void);
#else
static void toggle_col(uint8_t col);
static matrix_col_t read_rows(void);
#endif
__attribute__ ((weak))
void matrix_init_quantum(void) {
}
__attribute__ ((weak))
void matrix_scan_quantum(void) {
}
uint8_t matrix_rows(void) {
return MATRIX_ROWS;
}
uint8_t matrix_cols(void) {
return MATRIX_COLS;
}
void matrix_power_up(void) {
#if DIODE_DIRECTION == COL2ROW
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
/* DDRxn */
_SFR_IO8(row_pins[r].input_addr + 1) |= _BV(row_pins[r].bit);
toggle_row(r);
}
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
/* PORTxn */
_SFR_IO8(col_pins[c].input_addr + 2) |= _BV(col_pins[c].bit);
}
#else
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
/* DDRxn */
_SFR_IO8(col_pins[c].input_addr + 1) |= _BV(col_pins[c].bit);
toggle_col(c);
}
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
/* PORTxn */
_SFR_IO8(row_pins[r].input_addr + 2) |= _BV(row_pins[r].bit);
}
#endif
}
void matrix_init(void) {
/* frees PORTF by setting the JTD bit twice within four cycles */
#ifdef __AVR_ATmega32U4__
MCUCR |= _BV(JTD);
MCUCR |= _BV(JTD);
#endif
/* initializes the I/O pins */
#if DIODE_DIRECTION == COL2ROW
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
/* DDRxn */
_SFR_IO8(row_pins[r].input_addr + 1) |= _BV(row_pins[r].bit);
toggle_row(r);
}
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
/* PORTxn */
_SFR_IO8(col_pins[c].input_addr + 2) |= _BV(col_pins[c].bit);
}
#else
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
/* DDRxn */
_SFR_IO8(col_pins[c].input_addr + 1) |= _BV(col_pins[c].bit);
toggle_col(c);
}
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
/* PORTxn */
_SFR_IO8(row_pins[r].input_addr + 2) |= _BV(row_pins[r].bit);
}
#endif
matrix_init_quantum();
}
#if DIODE_DIRECTION == COL2ROW
uint8_t matrix_scan(void) {
static matrix_row_t debouncing_matrix[MATRIX_ROWS];
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
toggle_row(r);
matrix_row_t state = read_cols();
if (debouncing_matrix[r] != state) {
debouncing_matrix[r] = state;
debouncing_delay = DEBOUNCING_DELAY;
}
toggle_row(r);
}
if (debouncing_delay >= 0) {
dprintf("Debouncing delay remaining: %X\n", debouncing_delay);
--debouncing_delay;
if (debouncing_delay >= 0) {
wait_ms(1);
}
else {
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
matrix[r] = debouncing_matrix[r];
}
}
}
matrix_scan_quantum();
return 1;
}
static void toggle_row(uint8_t row) {
/* PINxn */
_SFR_IO8(row_pins[row].input_addr) = _BV(row_pins[row].bit);
}
static matrix_row_t read_cols(void) {
matrix_row_t state = 0;
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
/* PINxn */
if (!(_SFR_IO8(col_pins[c].input_addr) & _BV(col_pins[c].bit))) {
state |= (matrix_row_t)1 << c;
}
}
return state;
}
matrix_row_t matrix_get_row(uint8_t row) {
return matrix[row];
}
#else
uint8_t matrix_scan(void) {
static matrix_col_t debouncing_matrix[MATRIX_COLS];
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
toggle_col(c);
matrix_col_t state = read_rows();
if (debouncing_matrix[c] != state) {
debouncing_matrix[c] = state;
debouncing_delay = DEBOUNCING_DELAY;
}
toggle_col(c);
}
if (debouncing_delay >= 0) {
dprintf("Debouncing delay remaining: %X\n", debouncing_delay);
--debouncing_delay;
if (debouncing_delay >= 0) {
wait_ms(1);
}
else {
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
matrix[c] = debouncing_matrix[c];
}
}
}
matrix_scan_quantum();
return 1;
}
static void toggle_col(uint8_t col) {
/* PINxn */
_SFR_IO8(col_pins[col].input_addr) = _BV(col_pins[col].bit);
}
static matrix_col_t read_rows(void) {
matrix_col_t state = 0;
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
/* PINxn */
if (!(_SFR_IO8(row_pins[r].input_addr) & _BV(row_pins[r].bit))) {
state |= (matrix_col_t)1 << r;
}
}
return state;
}
matrix_row_t matrix_get_row(uint8_t row) {
matrix_row_t state = 0;
matrix_col_t mask = (matrix_col_t)1 << row;
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
if (matrix[c] & mask) {
state |= (matrix_row_t)1 << c;
}
}
return state;
}
#endif
bool matrix_is_modified(void) {
if (debouncing_delay >= 0) return false;
return true;
}
bool matrix_is_on(uint8_t row, uint8_t col) {
return matrix_get_row(row) & (matrix_row_t)1 << col;
}
void matrix_print(void) {
dprintln("Human-readable matrix state:");
for (uint8_t r = 0; r < MATRIX_ROWS; r++) {
dprintf("State of row %X: %016b\n", r, bitrev16(matrix_get_row(r)));
}
}
uint8_t matrix_key_count(void) {
uint8_t count = 0;
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
count += bitpop16(matrix_get_row(r));
}
return count;
}