qmk_firmware/quantum/mcu_selection.mk
Nick Brassel 620a946d01
Add STM32G431 and STM32G474 board definitions. (#11793)
* Add STM32G431 and STM32G474 board definitions.

* Add docs.
2021-02-06 11:27:46 +11:00

456 lines
14 KiB
Makefile

MCU_ORIG := $(MCU)
ifneq ($(findstring MKL26Z64, $(MCU)),)
# Cortex version
MCU = cortex-m0plus
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 6
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = KINETIS
MCU_SERIES = KL2x
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= MKL26Z64
# Startup code to use
# - it should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= kl2x
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= PJRC_TEENSY_LC
endif
ifneq ($(findstring MK20DX128, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = KINETIS
MCU_SERIES = K20x
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= MK20DX128
# Startup code to use
# - it should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= k20x5
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= PJRC_TEENSY_3
endif
ifneq ($(findstring MK20DX256, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = KINETIS
MCU_SERIES = K20x
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= MK20DX256
# Startup code to use
# - it should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= k20x7
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= PJRC_TEENSY_3_1
endif
ifneq ($(findstring STM32F042, $(MCU)),)
# Cortex version
MCU = cortex-m0
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 6
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F0xx
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F042x6
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f0xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_F042X6
USE_FPU ?= no
# Options to pass to dfu-util when flashing
DFU_ARGS ?= -d 0483:DF11 -a 0 -s 0x08000000:leave
DFU_SUFFIX_ARGS ?= -v 0483 -p DF11
endif
ifneq ($(findstring STM32F072, $(MCU)),)
# Cortex version
MCU = cortex-m0
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 6
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F0xx
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F072xB
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f0xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_F072XB
USE_FPU ?= no
# Options to pass to dfu-util when flashing
DFU_ARGS ?= -d 0483:DF11 -a 0 -s 0x08000000:leave
DFU_SUFFIX_ARGS ?= -v 0483 -p DF11
endif
ifneq ($(findstring STM32F103, $(MCU)),)
# Cortex version
MCU = cortex-m3
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F1xx
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F103x8
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f1xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_F103
USE_FPU ?= no
# Options to pass to dfu-util when flashing
DFU_ARGS ?= -d 0483:DF11 -a 0 -s 0x08000000:leave
DFU_SUFFIX_ARGS ?= -v 0483 -p DF11
endif
ifneq ($(findstring STM32F303, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F3xx
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F303xC
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f3xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_F303XC
USE_FPU ?= yes
# Options to pass to dfu-util when flashing
DFU_ARGS ?= -d 0483:DF11 -a 0 -s 0x08000000:leave
DFU_SUFFIX_ARGS ?= -v 0483 -p DF11
endif
ifneq ($(findstring STM32F401, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F401xC
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= BLACKPILL_STM32_F401
USE_FPU ?= yes
# Options to pass to dfu-util when flashing
DFU_ARGS ?= -d 0483:DF11 -a 0 -s 0x08000000:leave
DFU_SUFFIX_ARGS ?= -v 0483 -p DF11
endif
ifneq ($(findstring STM32F411, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F411xE
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= BLACKPILL_STM32_F411
USE_FPU ?= yes
# Options to pass to dfu-util when flashing
DFU_ARGS ?= -d 0483:DF11 -a 0 -s 0x08000000:leave
DFU_SUFFIX_ARGS ?= -v 0483 -p DF11
endif
ifneq ($(findstring STM32G431, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32G4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32G431xB
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32g4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_G431XB
USE_FPU ?= yes
# Options to pass to dfu-util when flashing
DFU_ARGS ?= -d 0483:DF11 -a 0 -s 0x08000000:leave
DFU_SUFFIX_ARGS ?= -v 0483 -p DF11
endif
ifneq ($(findstring STM32G474, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32G4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32G474xE
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32g4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_G474XE
USE_FPU ?= yes
# Options to pass to dfu-util when flashing
DFU_ARGS ?= -d 0483:DF11 -a 0 -s 0x08000000:leave
DFU_SUFFIX_ARGS ?= -v 0483 -p DF11
endif
ifneq (,$(filter $(MCU),at90usb162 atmega16u2 atmega32u2 atmega16u4 atmega32u4 at90usb646 at90usb647 at90usb1286 at90usb1287))
PROTOCOL = LUFA
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU ?= 16000000
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB ?= $(F_CPU)
# Interrupt driven control endpoint task
ifeq (,$(filter $(NO_INTERRUPT_CONTROL_ENDPOINT),yes))
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
endif
ifneq (,$(filter $(MCU),at90usb162 atmega16u2 atmega32u2))
NO_I2C = yes
endif
endif
ifneq (,$(filter $(MCU),atmega32a))
# MCU name for avrdude
AVRDUDE_MCU = m32
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 12000000
# unsupported features for now
NO_SUSPEND_POWER_DOWN ?= yes
endif
ifneq (,$(filter $(MCU),atmega328p))
# MCU name for avrdude
AVRDUDE_MCU = m328p
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 16000000
# unsupported features for now
NO_SUSPEND_POWER_DOWN ?= yes
endif
ifneq (,$(filter $(MCU),atmega328))
# MCU name for avrdude
AVRDUDE_MCU = m328
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 16000000
# unsupported features for now
NO_UART ?= yes
NO_SUSPEND_POWER_DOWN ?= yes
endif
ifneq (,$(filter $(MCU),attiny85))
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 16500000
# unsupported features for now
NO_SUSPEND_POWER_DOWN ?= yes
endif