mirror of
https://github.com/qmk/qmk_firmware.git
synced 2025-01-14 21:59:25 +00:00
229 lines
7.5 KiB
C
Executable File
229 lines
7.5 KiB
C
Executable File
/*
|
|
Copyright 2012 Jun Wako
|
|
Copyright 2014 Jack Humbert
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#if defined(__AVR__)
|
|
#include <avr/io.h>
|
|
#endif
|
|
#include "wait.h"
|
|
#include "print.h"
|
|
#include "debug.h"
|
|
#include "util.h"
|
|
#include "matrix.h"
|
|
#include "timer.h"
|
|
#include "dichotomy.h"
|
|
#include "pointing_device.h"
|
|
#include "report.h"
|
|
|
|
#if (MATRIX_COLS <= 8)
|
|
# define print_matrix_header() print("\nr/c 01234567\n")
|
|
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
|
|
# define matrix_bitpop(i) bitpop(matrix[i])
|
|
# define ROW_SHIFTER ((uint8_t)1)
|
|
#elif (MATRIX_COLS <= 16)
|
|
# define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
|
|
# define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
|
|
# define matrix_bitpop(i) bitpop16(matrix[i])
|
|
# define ROW_SHIFTER ((uint16_t)1)
|
|
#elif (MATRIX_COLS <= 32)
|
|
# define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
|
|
# define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
|
|
# define matrix_bitpop(i) bitpop32(matrix[i])
|
|
# define ROW_SHIFTER ((uint32_t)1)
|
|
#endif
|
|
|
|
#define MAIN_ROWMASK 0xFFF0;
|
|
#define LOWER_ROWMASK 0x3FC0;
|
|
|
|
/* matrix state(1:on, 0:off) */
|
|
static matrix_row_t matrix[MATRIX_ROWS];
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_init_quantum(void) {
|
|
matrix_init_kb();
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_scan_quantum(void) {
|
|
matrix_scan_kb();
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_init_kb(void) {
|
|
matrix_init_user();
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_scan_kb(void) {
|
|
matrix_scan_user();
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_init_user(void) {
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void matrix_scan_user(void) {
|
|
}
|
|
|
|
inline
|
|
uint8_t matrix_rows(void) {
|
|
return MATRIX_ROWS;
|
|
}
|
|
|
|
inline
|
|
uint8_t matrix_cols(void) {
|
|
return MATRIX_COLS;
|
|
}
|
|
|
|
void matrix_init(void) {
|
|
DDRF |= (1<<6);
|
|
DDRF |= (1<<5);
|
|
DDRD |= (1<<1);
|
|
matrix_init_quantum();
|
|
}
|
|
|
|
uint8_t matrix_scan(void)
|
|
{
|
|
SERIAL_UART_INIT();
|
|
//xprintf("\r\nTRYING TO SCAN");
|
|
|
|
uint32_t timeout = 0;
|
|
|
|
//the s character requests the RF slave to send the matrix
|
|
SERIAL_UART_DATA = 's';
|
|
|
|
//trust the external keystates entirely, erase the last data
|
|
uint8_t uart_data[11] = {0};
|
|
|
|
//there are 10 bytes corresponding to 10 columns, and an end byte
|
|
for (uint8_t i = 0; i < 11; i++) {
|
|
//wait for the serial data, timeout if it's been too long
|
|
//this only happened in testing with a loose wire, but does no
|
|
//harm to leave it in here
|
|
while(!SERIAL_UART_RXD_PRESENT){
|
|
timeout++;
|
|
if (timeout > 10000){
|
|
xprintf("\r\nTime out in keyboard.");
|
|
break;
|
|
}
|
|
}
|
|
uart_data[i] = SERIAL_UART_DATA;
|
|
}
|
|
|
|
//check for the end packet, the key state bytes use the LSBs, so 0xE0
|
|
//will only show up here if the correct bytes were recieved
|
|
uint8_t checksum = 0x00;
|
|
for (uint8_t z=0; z<10; z++){
|
|
checksum = checksum^uart_data[z];
|
|
}
|
|
checksum = checksum ^ (uart_data[10] & 0xF0);
|
|
// Smash the checksum from 1 byte into 4 bits
|
|
checksum = (checksum ^ ((checksum & 0xF0)>>4)) & 0x0F;
|
|
//xprintf("\r\nGOT RAW PACKET: \r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d",uart_data[0],uart_data[1],uart_data[2],uart_data[3],uart_data[4],uart_data[5],uart_data[6],uart_data[7],uart_data[8],uart_data[9],uart_data[10],checksum);
|
|
if ((uart_data[10] & 0x0F) == checksum) { //this is an arbitrary binary checksum (1001) (that would be 0x9.)
|
|
//xprintf("\r\nGOT PACKET: \r\n%d\r\n%d\r\n%d\r\n%d\r\n%d\r\n%d",uart_data[0],uart_data[1],uart_data[2],uart_data[3],uart_data[4],uart_data[5]);
|
|
//shifting and transferring the keystates to the QMK matrix variable
|
|
//bits 1-12 are row 1, 13-24 are row 2, 25-36 are row 3,
|
|
//bits 37-42 are row 4 (only 6 wide, 1-3 are 0, and 10-12 are 0)
|
|
//bits 43-48 are row 5 (same as row 4)
|
|
/* ASSUMING MSB FIRST */
|
|
matrix[0] = (((uint16_t) uart_data[0] << 8) | ((uint16_t) uart_data[1])) & MAIN_ROWMASK;
|
|
matrix[1] = ((uint16_t) uart_data[1] << 12) | ((uint16_t) uart_data[2] << 4);
|
|
matrix[2] = (((uint16_t) uart_data[3] << 8) | ((uint16_t) uart_data[4])) & MAIN_ROWMASK;
|
|
matrix[3] = (((uint16_t) uart_data[4] << 9) | ((uint16_t) uart_data[5] << 1)) & LOWER_ROWMASK;
|
|
matrix[4] = (((uint16_t) uart_data[5] << 7) | ((uart_data[10] & 1<<7) ? 1:0) << 13 | ((uart_data[10] & 1<<6) ? 1:0) << 6) & LOWER_ROWMASK;
|
|
/* OK, TURNS OUT THAT WAS A BAD ASSUMPTION */
|
|
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
|
|
//I've unpacked these into the mirror image of what QMK expects them to be, so...
|
|
/*uint8_t halfOne = (matrix[i]>>8);
|
|
uint8_t halfTwo = (matrix[i] & 0xFF);
|
|
halfOne = ((halfOne * 0x0802LU & 0x22110LU) | (halfOne * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
|
|
halfTwo = ((halfTwo * 0x0802LU & 0x22110LU) | (halfTwo * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
|
|
matrix[i] = ((halfTwo<<8) & halfOne);*/
|
|
//matrix[i] = ((matrix[i] * 0x0802LU & 0x22110LU) | (matrix[i] * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16;
|
|
matrix[i] = bitrev16(matrix[i]);
|
|
//bithack mirror! Doesn't make any sense, but works - and efficiently.
|
|
}
|
|
//if (uart_data[6]!=0 || uart_data[7]!=0){
|
|
//if (maxCount<101){
|
|
// xprintf("\r\nMouse data: x=%d, y=%d",(int8_t)uart_data[6],(int8_t)uart_data[7]);
|
|
//}
|
|
report_mouse_t currentReport = {};
|
|
//check for the end packet, bytes 1-4 are movement and scroll
|
|
//but byte 5 has bits 0-3 for the scroll button state
|
|
//(1000 if pressed, 0000 if not) and bits 4-7 are always 1
|
|
//We can use this to verify the report sent properly.
|
|
|
|
currentReport = pointing_device_get_report();
|
|
//shifting and transferring the info to the mouse report varaible
|
|
//mouseReport.x = 127 max -127 min
|
|
currentReport.x = (int8_t) uart_data[6];
|
|
//mouseReport.y = 127 max -127 min
|
|
currentReport.y = (int8_t) uart_data[7];
|
|
//mouseReport.v = 127 max -127 min (scroll vertical)
|
|
currentReport.v = (int8_t) uart_data[8];
|
|
//mouseReport.h = 127 max -127 min (scroll horizontal)
|
|
currentReport.h = (int8_t) uart_data[9];
|
|
/*
|
|
currentReport.x = 0;
|
|
currentReport.y = 0;
|
|
currentReport.v = 0;
|
|
currentReport.h = 0;*/
|
|
pointing_device_set_report(currentReport);
|
|
} else {
|
|
//xprintf("\r\nRequested packet, data 10 was %d but checksum was %d",(uart_data[10] & 0x0F), (checksum & 0x0F));
|
|
}
|
|
//matrix_print();
|
|
|
|
matrix_scan_quantum();
|
|
return 1;
|
|
}
|
|
|
|
inline
|
|
bool matrix_is_on(uint8_t row, uint8_t col)
|
|
{
|
|
return (matrix[row] & ((matrix_row_t)1<<col));
|
|
}
|
|
|
|
inline
|
|
matrix_row_t matrix_get_row(uint8_t row)
|
|
{
|
|
return matrix[row];
|
|
}
|
|
|
|
void matrix_print(void)
|
|
{
|
|
print_matrix_header();
|
|
|
|
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
|
|
phex(row); print(": ");
|
|
print_matrix_row(row);
|
|
print("\n");
|
|
}
|
|
}
|
|
|
|
uint8_t matrix_key_count(void)
|
|
{
|
|
uint8_t count = 0;
|
|
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
|
|
count += matrix_bitpop(i);
|
|
}
|
|
return count;
|
|
}
|