mirror of
https://github.com/qmk/qmk_firmware.git
synced 2025-01-18 15:53:26 +00:00
d16d87c2f3
Keychron Q11 uses `matrix_mask` to mask away the matrix location used for `SPLIT_HAND_MATRIX_GRID` (otherwise the keyboard will constantly generate a wakeup request whenever the host enters suspend). However, the value of `matrix_mask` is actually chosen to mask away all unused locations, but it was apparently generated for the ANSI board and therefore masks away the left Shift key on the ISO board, breaking the functionality of that key. Fix `matrix_mask` to make the masking work as intended: - Set the `[4, 1]` bit to 1; this is the matrix location for the ISO left Shift. - Set the `[2, 5]` bit to 0; this is actually the matrix location which corresponds to `#define SPLIT_HAND_MATRIX_GRID A2, A15` on the left side, which was intended to be masked; apparently the wakeup problem does not happen due to `SPLIT_HAND_MATRIX_GRID_LOW_IS_RIGHT`, so the left half actually has that matrix location open. On the right side `A2, A15` is `[9, 6]`, which was masked off correctly.
163 lines
5.4 KiB
C
Executable File
163 lines
5.4 KiB
C
Executable File
/* Copyright 2023 @ Keychron (https://www.keychron.com)
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "quantum.h"
|
|
|
|
// Mask out handedness diode to prevent it
|
|
// from keeping the keyboard awake
|
|
// - just mirroring `KC_NO` in the `LAYOUT`
|
|
// macro to keep it simple
|
|
const matrix_row_t matrix_mask[] = {
|
|
0b011111111,
|
|
0b011111111,
|
|
0b011011111,
|
|
0b001111111,
|
|
0b011111111,
|
|
0b001011111,
|
|
0b111111111,
|
|
0b101111111,
|
|
0b111111111,
|
|
0b110111111,
|
|
0b010111111,
|
|
0b111011110,
|
|
};
|
|
|
|
#ifdef DIP_SWITCH_ENABLE
|
|
bool dip_switch_update_kb(uint8_t index, bool active) {
|
|
if (!dip_switch_update_user(index, active)) {
|
|
return false;
|
|
}
|
|
if (index == 0) {
|
|
default_layer_set(1UL << (active ? 0 : 2));
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#if defined(RGB_MATRIX_ENABLE) && defined(CAPS_LOCK_LED_INDEX)
|
|
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
|
|
if (!process_record_user(keycode, record)) {
|
|
return false;
|
|
}
|
|
switch (keycode) {
|
|
case RGB_TOG:
|
|
if (record->event.pressed) {
|
|
switch (rgb_matrix_get_flags()) {
|
|
case LED_FLAG_ALL: {
|
|
rgb_matrix_set_flags(LED_FLAG_NONE);
|
|
rgb_matrix_set_color_all(0, 0, 0);
|
|
} break;
|
|
default: {
|
|
rgb_matrix_set_flags(LED_FLAG_ALL);
|
|
} break;
|
|
}
|
|
}
|
|
if (!rgb_matrix_is_enabled()) {
|
|
rgb_matrix_set_flags(LED_FLAG_ALL);
|
|
rgb_matrix_enable();
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool rgb_matrix_indicators_advanced_kb(uint8_t led_min, uint8_t led_max) {
|
|
if (!rgb_matrix_indicators_advanced_user(led_min, led_max)) {
|
|
return false;
|
|
}
|
|
// RGB_MATRIX_INDICATOR_SET_COLOR(index, red, green, blue);
|
|
# if defined(CAPS_LOCK_LED_INDEX)
|
|
if (host_keyboard_led_state().caps_lock) {
|
|
RGB_MATRIX_INDICATOR_SET_COLOR(CAPS_LOCK_LED_INDEX, 255, 255, 255);
|
|
} else {
|
|
if (!rgb_matrix_get_flags()) {
|
|
RGB_MATRIX_INDICATOR_SET_COLOR(CAPS_LOCK_LED_INDEX, 0, 0, 0);
|
|
}
|
|
}
|
|
# endif // CAPS_LOCK_LED_INDEX
|
|
# if defined(NUM_LOCK_LED_INDEX)
|
|
if (host_keyboard_led_state().num_lock) {
|
|
RGB_MATRIX_INDICATOR_SET_COLOR(NUM_LOCK_LED_INDEX, 255, 255, 255);
|
|
} else {
|
|
if (!rgb_matrix_get_flags()) {
|
|
RGB_MATRIX_INDICATOR_SET_COLOR(NUM_LOCK_LED_INDEX, 0, 0, 0);
|
|
}
|
|
}
|
|
# endif // NUM_LOCK_LED_INDEX
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#define ADC_BUFFER_DEPTH 1
|
|
#define ADC_NUM_CHANNELS 1
|
|
#define ADC_SAMPLING_RATE ADC_SMPR_SMP_12P5
|
|
#define ADC_RESOLUTION ADC_CFGR_RES_10BITS
|
|
|
|
static int16_t analogReadPin_my(pin_t pin) {
|
|
ADCConfig adcCfg = {};
|
|
adcsample_t sampleBuffer[ADC_NUM_CHANNELS * ADC_BUFFER_DEPTH];
|
|
ADCDriver *targetDriver = &ADCD1;
|
|
ADCConversionGroup adcConversionGroup = {
|
|
.circular = FALSE,
|
|
.num_channels = (uint16_t)(ADC_NUM_CHANNELS),
|
|
.cfgr = ADC_RESOLUTION,
|
|
};
|
|
|
|
palSetLineMode(pin, PAL_MODE_INPUT_ANALOG);
|
|
switch (pin) {
|
|
case B0:
|
|
adcConversionGroup.smpr[2] = ADC_SMPR2_SMP_AN15(ADC_SAMPLING_RATE);
|
|
adcConversionGroup.sqr[0] = ADC_SQR1_SQ1_N(ADC_CHANNEL_IN15);
|
|
sampleBuffer[0] = 0;
|
|
break;
|
|
case B1:
|
|
adcConversionGroup.smpr[2] = ADC_SMPR2_SMP_AN16(ADC_SAMPLING_RATE);
|
|
adcConversionGroup.sqr[0] = ADC_SQR1_SQ1_N(ADC_CHANNEL_IN16);
|
|
sampleBuffer[0] = 0;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
adcStart(targetDriver, &adcCfg);
|
|
if (adcConvert(targetDriver, &adcConversionGroup, &sampleBuffer[0], ADC_BUFFER_DEPTH) != MSG_OK) {
|
|
return 0;
|
|
}
|
|
|
|
return *sampleBuffer;
|
|
}
|
|
|
|
void keyboard_post_init_kb(void) {
|
|
// 1. The pin A5/B5 of the USB C interface in the left hand is connected to the pin A0 of MCU,
|
|
// A0 will be set to output and write high when keyboard initial.
|
|
// 2. The same pin in the right hand is connected to the pin B0 and B1 of MCU respectively,
|
|
// and the ADC function of B0 and B1 will be enabled when keyboard initial.
|
|
// 3. because the serial usart RXD and TXD is multiplexed on USB's D+ and D- in the right hand.
|
|
// So detect the voltage on the pin A5/B5 of the USB C interface by ADC,
|
|
// and disable USB connectivity when the ADC value exceeds 1000,
|
|
// to avoid affecting the serial usart communication between the left hand and the right hand.
|
|
if (is_keyboard_left()) {
|
|
setPinOutput(A0);
|
|
writePinHigh(A0);
|
|
} else {
|
|
if ((analogReadPin_my(B0) > 1000) || (analogReadPin_my(B1) > 1000)) {
|
|
setPinInput(A11);
|
|
setPinInput(A12);
|
|
}
|
|
}
|
|
|
|
keyboard_post_init_user();
|
|
}
|