mirror of
https://github.com/qmk/qmk_firmware.git
synced 2024-11-24 20:32:58 +00:00
247 lines
9.3 KiB
C
247 lines
9.3 KiB
C
/* Copyright 2017, 2022 Joseph Wasson, Vladislav Kucheriavykh
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "process_steno.h"
|
|
#include "quantum_keycodes.h"
|
|
#include "eeconfig.h"
|
|
#include <string.h>
|
|
#ifdef VIRTSER_ENABLE
|
|
# include "virtser.h"
|
|
#endif
|
|
#ifdef STENO_ENABLE_ALL
|
|
# include "eeprom.h"
|
|
#endif
|
|
|
|
// All steno keys that have been pressed to form this chord,
|
|
// stored in MAX_STROKE_SIZE groups of 8-bit arrays.
|
|
static uint8_t chord[MAX_STROKE_SIZE] = {0};
|
|
// The number of physical keys actually being held down.
|
|
// This is not always equal to the number of 1 bits in `chord` because it is possible to
|
|
// simultaneously press down four keys, then release three of those four keys and then press yet
|
|
// another key while the fourth finger is still holding down its key.
|
|
// At the end of this scenario given as an example, `chord` would have five bits set to 1 but
|
|
// `n_pressed_keys` would be set to 2 because there are only two keys currently being pressed down.
|
|
static int8_t n_pressed_keys = 0;
|
|
|
|
#ifdef STENO_ENABLE_ALL
|
|
static steno_mode_t mode;
|
|
#elif defined(STENO_ENABLE_GEMINI)
|
|
static const steno_mode_t mode = STENO_MODE_GEMINI;
|
|
#elif defined(STENO_ENABLE_BOLT)
|
|
static const steno_mode_t mode = STENO_MODE_BOLT;
|
|
#endif
|
|
|
|
static inline void steno_clear_chord(void) {
|
|
memset(chord, 0, sizeof(chord));
|
|
}
|
|
|
|
#ifdef STENO_ENABLE_GEMINI
|
|
|
|
# ifdef VIRTSER_ENABLE
|
|
void send_steno_chord_gemini(void) {
|
|
// Set MSB to 1 to indicate the start of packet
|
|
chord[0] |= 0x80;
|
|
for (uint8_t i = 0; i < GEMINI_STROKE_SIZE; ++i) {
|
|
virtser_send(chord[i]);
|
|
}
|
|
}
|
|
# else
|
|
# pragma message "VIRTSER_ENABLE = yes is required for Gemini PR to work properly out of the box!"
|
|
# endif // VIRTSER_ENABLE
|
|
|
|
/**
|
|
* @precondition: `key` is pressed
|
|
*/
|
|
bool add_gemini_key_to_chord(uint8_t key) {
|
|
// Although each group of the packet is 8 bits long, the MSB is reserved
|
|
// to indicate whether that byte is the first byte of the packet (MSB=1)
|
|
// or one of the remaining five bytes of the packet (MSB=0).
|
|
// As a consequence, only 7 out of the 8 bits are left to be used as a bit array
|
|
// for the steno keys of that group.
|
|
const int group_idx = key / 7;
|
|
const int intra_group_idx = key - group_idx * 7;
|
|
// The 0th steno key of the group has bit=0b01000000, the 1st has bit=0b00100000, etc.
|
|
const uint8_t bit = 1 << (6 - intra_group_idx);
|
|
chord[group_idx] |= bit;
|
|
return false;
|
|
}
|
|
#endif // STENO_ENABLE_GEMINI
|
|
|
|
#ifdef STENO_ENABLE_BOLT
|
|
|
|
# define TXB_GRP0 0b00000000
|
|
# define TXB_GRP1 0b01000000
|
|
# define TXB_GRP2 0b10000000
|
|
# define TXB_GRP3 0b11000000
|
|
# define TXB_GRPMASK 0b11000000
|
|
|
|
# define TXB_GET_GROUP(code) ((code & TXB_GRPMASK) >> 6)
|
|
|
|
static const uint8_t boltmap[64] PROGMEM = {TXB_NUL, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_S_L, TXB_S_L, TXB_T_L, TXB_K_L, TXB_P_L, TXB_W_L, TXB_H_L, TXB_R_L, TXB_A_L, TXB_O_L, TXB_STR, TXB_STR, TXB_NUL, TXB_NUL, TXB_NUL, TXB_STR, TXB_STR, TXB_E_R, TXB_U_R, TXB_F_R, TXB_R_R, TXB_P_R, TXB_B_R, TXB_L_R, TXB_G_R, TXB_T_R, TXB_S_R, TXB_D_R, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_NUM, TXB_Z_R};
|
|
|
|
# ifdef VIRTSER_ENABLE
|
|
static void send_steno_chord_bolt(void) {
|
|
for (uint8_t i = 0; i < BOLT_STROKE_SIZE; ++i) {
|
|
// TX Bolt uses variable length packets where each byte corresponds to a bit array of certain keys.
|
|
// If a user chorded the keys of the first group with keys of the last group, for example, there
|
|
// would be bytes of 0x00 in `chord` for the middle groups which we mustn't send.
|
|
if (chord[i]) {
|
|
virtser_send(chord[i]);
|
|
}
|
|
}
|
|
// Sending a null packet is not always necessary, but it is simpler and more reliable
|
|
// to unconditionally send it every time instead of keeping track of more states and
|
|
// creating more branches in the execution of the program.
|
|
virtser_send(0);
|
|
}
|
|
# else
|
|
# pragma message "VIRTSER_ENABLE = yes is required for TX Bolt to work properly out of the box!"
|
|
# endif // VIRTSER_ENABLE
|
|
|
|
/**
|
|
* @precondition: `key` is pressed
|
|
*/
|
|
static bool add_bolt_key_to_chord(uint8_t key) {
|
|
uint8_t boltcode = pgm_read_byte(boltmap + key);
|
|
chord[TXB_GET_GROUP(boltcode)] |= boltcode;
|
|
return false;
|
|
}
|
|
#endif // STENO_ENABLE_BOLT
|
|
|
|
#ifdef STENO_COMBINEDMAP
|
|
/* Used to look up when pressing the middle row key to combine two consonant or vowel keys */
|
|
static const uint16_t combinedmap_first[] PROGMEM = {STN_S1, STN_TL, STN_PL, STN_HL, STN_FR, STN_PR, STN_LR, STN_TR, STN_DR, STN_A, STN_E};
|
|
static const uint16_t combinedmap_second[] PROGMEM = {STN_S2, STN_KL, STN_WL, STN_RL, STN_RR, STN_BR, STN_GR, STN_SR, STN_ZR, STN_O, STN_U};
|
|
#endif
|
|
|
|
#ifdef STENO_ENABLE_ALL
|
|
void steno_init(void) {
|
|
mode = eeprom_read_byte(EECONFIG_STENOMODE);
|
|
}
|
|
|
|
void steno_set_mode(steno_mode_t new_mode) {
|
|
steno_clear_chord();
|
|
mode = new_mode;
|
|
eeprom_update_byte(EECONFIG_STENOMODE, mode);
|
|
}
|
|
#endif // STENO_ENABLE_ALL
|
|
|
|
/* override to intercept chords right before they get sent.
|
|
* return zero to suppress normal sending behavior.
|
|
*/
|
|
__attribute__((weak)) bool send_steno_chord_user(steno_mode_t mode, uint8_t chord[MAX_STROKE_SIZE]) {
|
|
return true;
|
|
}
|
|
|
|
__attribute__((weak)) bool post_process_steno_user(uint16_t keycode, keyrecord_t *record, steno_mode_t mode, uint8_t chord[MAX_STROKE_SIZE], int8_t n_pressed_keys) {
|
|
return true;
|
|
}
|
|
|
|
__attribute__((weak)) bool process_steno_user(uint16_t keycode, keyrecord_t *record) {
|
|
return true;
|
|
}
|
|
|
|
bool process_steno(uint16_t keycode, keyrecord_t *record) {
|
|
if (keycode < QK_STENO || keycode > QK_STENO_MAX) {
|
|
return true; // Not a steno key, pass it further along the chain
|
|
/*
|
|
* Clearing or sending the chord state is not necessary as we intentionally ignore whatever
|
|
* normal keyboard keys the user may have tapped while chording steno keys.
|
|
*/
|
|
}
|
|
if (IS_NOEVENT(record->event)) {
|
|
return true;
|
|
}
|
|
if (!process_steno_user(keycode, record)) {
|
|
return false; // User fully processed the steno key themselves
|
|
}
|
|
switch (keycode) {
|
|
#ifdef STENO_ENABLE_ALL
|
|
case QK_STENO_BOLT:
|
|
if (record->event.pressed) {
|
|
steno_set_mode(STENO_MODE_BOLT);
|
|
}
|
|
return false;
|
|
|
|
case QK_STENO_GEMINI:
|
|
if (record->event.pressed) {
|
|
steno_set_mode(STENO_MODE_GEMINI);
|
|
}
|
|
return false;
|
|
#endif // STENO_ENABLE_ALL
|
|
|
|
#ifdef STENO_COMBINEDMAP
|
|
case QK_STENO_COMB ... QK_STENO_COMB_MAX: {
|
|
bool first_result = process_steno(combinedmap_first[keycode - QK_STENO_COMB], record);
|
|
bool second_result = process_steno(combinedmap_second[keycode - QK_STENO_COMB], record);
|
|
return first_result && second_result;
|
|
}
|
|
#endif // STENO_COMBINEDMAP
|
|
case STN__MIN ... STN__MAX:
|
|
if (record->event.pressed) {
|
|
n_pressed_keys++;
|
|
switch (mode) {
|
|
#ifdef STENO_ENABLE_BOLT
|
|
case STENO_MODE_BOLT:
|
|
add_bolt_key_to_chord(keycode - QK_STENO);
|
|
break;
|
|
#endif // STENO_ENABLE_BOLT
|
|
#ifdef STENO_ENABLE_GEMINI
|
|
case STENO_MODE_GEMINI:
|
|
add_gemini_key_to_chord(keycode - QK_STENO);
|
|
break;
|
|
#endif // STENO_ENABLE_GEMINI
|
|
default:
|
|
return false;
|
|
}
|
|
if (!post_process_steno_user(keycode, record, mode, chord, n_pressed_keys)) {
|
|
return false;
|
|
}
|
|
} else { // is released
|
|
n_pressed_keys--;
|
|
if (!post_process_steno_user(keycode, record, mode, chord, n_pressed_keys)) {
|
|
return false;
|
|
}
|
|
if (n_pressed_keys > 0) {
|
|
// User hasn't released all keys yet,
|
|
// so the chord cannot be sent
|
|
return false;
|
|
}
|
|
n_pressed_keys = 0;
|
|
if (!send_steno_chord_user(mode, chord)) {
|
|
steno_clear_chord();
|
|
return false;
|
|
}
|
|
switch (mode) {
|
|
#if defined(STENO_ENABLE_BOLT) && defined(VIRTSER_ENABLE)
|
|
case STENO_MODE_BOLT:
|
|
send_steno_chord_bolt();
|
|
break;
|
|
#endif // STENO_ENABLE_BOLT && VIRTSER_ENABLE
|
|
#if defined(STENO_ENABLE_GEMINI) && defined(VIRTSER_ENABLE)
|
|
case STENO_MODE_GEMINI:
|
|
send_steno_chord_gemini();
|
|
break;
|
|
#endif // STENO_ENABLE_GEMINI && VIRTSER_ENABLE
|
|
default:
|
|
break;
|
|
}
|
|
steno_clear_chord();
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|