mirror of
https://github.com/qmk/qmk_firmware.git
synced 2025-01-18 15:53:26 +00:00
b61baf4281
With my XD60, I noticed that when typing the backlight was flickering. The XD60 doesn't have the backlight wired to a hardware PWM pin. I assumed it was a timing issue in the matrix scan that made the PWM lit the LED a bit too longer. I verified it because the more keys that were pressed, the more lighting I observed. This patch makes the software PWM be called during CPU interruptions. It works almost like the hardware PWM, except instead of using the CPU waveform generation, the CPU will fire interruption when the LEDs need be turned on or off. Using the same timer system as for hardware PWM, when the counter will reach OCRxx (the current backlight level), an Output Compare match interrupt will be fired and we'll turn the LEDs off. When the counter reaches its maximum value, an overflow interrupt will be triggered in which we turn the LEDs on. This way we replicate the hardware backlight PWM duty cycle. This gives a better time stability of the PWM computation than pure software PWM, leading to a flicker free backlight. Since this is reusing the hardware PWM code, software PWM also supports backlight breathing. Note that if timer1 is used for audio, backlight will use timer3, and if timer3 is used for audio backlight will use timer1. If both timers are used for audio, then this feature is disabled and we revert to the matrix scan based PWM computation. Signed-off-by: Brice Figureau <brice@daysofwonder.com>
1747 lines
46 KiB
C
1747 lines
46 KiB
C
/* Copyright 2016-2017 Jack Humbert
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "quantum.h"
|
|
|
|
#if !defined(RGBLIGHT_ENABLE) && !defined(RGB_MATRIX_ENABLE)
|
|
#include "rgb.h"
|
|
#endif
|
|
|
|
#ifdef PROTOCOL_LUFA
|
|
#include "outputselect.h"
|
|
#endif
|
|
|
|
#ifndef TAPPING_TERM
|
|
#define TAPPING_TERM 200
|
|
#endif
|
|
|
|
#ifndef BREATHING_PERIOD
|
|
#define BREATHING_PERIOD 6
|
|
#endif
|
|
|
|
#include "backlight.h"
|
|
extern backlight_config_t backlight_config;
|
|
|
|
#ifdef FAUXCLICKY_ENABLE
|
|
#include "fauxclicky.h"
|
|
#endif
|
|
|
|
#ifdef API_ENABLE
|
|
#include "api.h"
|
|
#endif
|
|
|
|
#ifdef MIDI_ENABLE
|
|
#include "process_midi.h"
|
|
#endif
|
|
|
|
#ifdef VELOCIKEY_ENABLE
|
|
#include "velocikey.h"
|
|
#endif
|
|
|
|
#ifdef HAPTIC_ENABLE
|
|
#include "haptic.h"
|
|
#endif
|
|
|
|
#ifdef ENCODER_ENABLE
|
|
#include "encoder.h"
|
|
#endif
|
|
|
|
#ifdef AUDIO_ENABLE
|
|
#ifndef GOODBYE_SONG
|
|
#define GOODBYE_SONG SONG(GOODBYE_SOUND)
|
|
#endif
|
|
#ifndef AG_NORM_SONG
|
|
#define AG_NORM_SONG SONG(AG_NORM_SOUND)
|
|
#endif
|
|
#ifndef AG_SWAP_SONG
|
|
#define AG_SWAP_SONG SONG(AG_SWAP_SOUND)
|
|
#endif
|
|
float goodbye_song[][2] = GOODBYE_SONG;
|
|
float ag_norm_song[][2] = AG_NORM_SONG;
|
|
float ag_swap_song[][2] = AG_SWAP_SONG;
|
|
#ifdef DEFAULT_LAYER_SONGS
|
|
float default_layer_songs[][16][2] = DEFAULT_LAYER_SONGS;
|
|
#endif
|
|
#endif
|
|
|
|
static void do_code16 (uint16_t code, void (*f) (uint8_t)) {
|
|
switch (code) {
|
|
case QK_MODS ... QK_MODS_MAX:
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (code & QK_LCTL)
|
|
f(KC_LCTL);
|
|
if (code & QK_LSFT)
|
|
f(KC_LSFT);
|
|
if (code & QK_LALT)
|
|
f(KC_LALT);
|
|
if (code & QK_LGUI)
|
|
f(KC_LGUI);
|
|
|
|
if (code < QK_RMODS_MIN) return;
|
|
|
|
if (code & QK_RCTL)
|
|
f(KC_RCTL);
|
|
if (code & QK_RSFT)
|
|
f(KC_RSFT);
|
|
if (code & QK_RALT)
|
|
f(KC_RALT);
|
|
if (code & QK_RGUI)
|
|
f(KC_RGUI);
|
|
}
|
|
|
|
static inline void qk_register_weak_mods(uint8_t kc) {
|
|
add_weak_mods(MOD_BIT(kc));
|
|
send_keyboard_report();
|
|
}
|
|
|
|
static inline void qk_unregister_weak_mods(uint8_t kc) {
|
|
del_weak_mods(MOD_BIT(kc));
|
|
send_keyboard_report();
|
|
}
|
|
|
|
static inline void qk_register_mods(uint8_t kc) {
|
|
add_weak_mods(MOD_BIT(kc));
|
|
send_keyboard_report();
|
|
}
|
|
|
|
static inline void qk_unregister_mods(uint8_t kc) {
|
|
del_weak_mods(MOD_BIT(kc));
|
|
send_keyboard_report();
|
|
}
|
|
|
|
void register_code16 (uint16_t code) {
|
|
if (IS_MOD(code) || code == KC_NO) {
|
|
do_code16 (code, qk_register_mods);
|
|
} else {
|
|
do_code16 (code, qk_register_weak_mods);
|
|
}
|
|
register_code (code);
|
|
}
|
|
|
|
void unregister_code16 (uint16_t code) {
|
|
unregister_code (code);
|
|
if (IS_MOD(code) || code == KC_NO) {
|
|
do_code16 (code, qk_unregister_mods);
|
|
} else {
|
|
do_code16 (code, qk_unregister_weak_mods);
|
|
}
|
|
}
|
|
|
|
void tap_code16(uint16_t code) {
|
|
register_code16(code);
|
|
#if TAP_CODE_DELAY > 0
|
|
wait_ms(TAP_CODE_DELAY);
|
|
#endif
|
|
unregister_code16(code);
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
bool process_action_kb(keyrecord_t *record) {
|
|
return true;
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
|
|
return process_record_user(keycode, record);
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
|
|
return true;
|
|
}
|
|
|
|
void reset_keyboard(void) {
|
|
clear_keyboard();
|
|
#if defined(MIDI_ENABLE) && defined(MIDI_BASIC)
|
|
process_midi_all_notes_off();
|
|
#endif
|
|
#ifdef AUDIO_ENABLE
|
|
#ifndef NO_MUSIC_MODE
|
|
music_all_notes_off();
|
|
#endif
|
|
uint16_t timer_start = timer_read();
|
|
PLAY_SONG(goodbye_song);
|
|
shutdown_user();
|
|
while(timer_elapsed(timer_start) < 250)
|
|
wait_ms(1);
|
|
stop_all_notes();
|
|
#else
|
|
shutdown_user();
|
|
wait_ms(250);
|
|
#endif
|
|
#ifdef HAPTIC_ENABLE
|
|
haptic_shutdown();
|
|
#endif
|
|
// this is also done later in bootloader.c - not sure if it's neccesary here
|
|
#ifdef BOOTLOADER_CATERINA
|
|
*(uint16_t *)0x0800 = 0x7777; // these two are a-star-specific
|
|
#endif
|
|
bootloader_jump();
|
|
}
|
|
|
|
// Shift / paren setup
|
|
|
|
#ifndef LSPO_KEY
|
|
#define LSPO_KEY KC_9
|
|
#endif
|
|
#ifndef RSPC_KEY
|
|
#define RSPC_KEY KC_0
|
|
#endif
|
|
|
|
#ifndef LSPO_MOD
|
|
#define LSPO_MOD KC_LSFT
|
|
#endif
|
|
#ifndef RSPC_MOD
|
|
#define RSPC_MOD KC_RSFT
|
|
#endif
|
|
|
|
// Shift / Enter setup
|
|
#ifndef SFTENT_KEY
|
|
#define SFTENT_KEY KC_ENT
|
|
#endif
|
|
|
|
static bool shift_interrupted[2] = {0, 0};
|
|
static uint16_t scs_timer[2] = {0, 0};
|
|
|
|
/* true if the last press of GRAVE_ESC was shifted (i.e. GUI or SHIFT were pressed), false otherwise.
|
|
* Used to ensure that the correct keycode is released if the key is released.
|
|
*/
|
|
static bool grave_esc_was_shifted = false;
|
|
|
|
/* Convert record into usable keycode via the contained event. */
|
|
uint16_t get_record_keycode(keyrecord_t *record) {
|
|
return get_event_keycode(record->event);
|
|
}
|
|
|
|
|
|
/* Convert event into usable keycode. Checks the layer cache to ensure that it
|
|
* retains the correct keycode after a layer change, if the key is still pressed.
|
|
*/
|
|
uint16_t get_event_keycode(keyevent_t event) {
|
|
|
|
#if !defined(NO_ACTION_LAYER) && !defined(STRICT_LAYER_RELEASE)
|
|
/* TODO: Use store_or_get_action() or a similar function. */
|
|
if (!disable_action_cache) {
|
|
uint8_t layer;
|
|
|
|
if (event.pressed) {
|
|
layer = layer_switch_get_layer(event.key);
|
|
update_source_layers_cache(event.key, layer);
|
|
} else {
|
|
layer = read_source_layers_cache(event.key);
|
|
}
|
|
return keymap_key_to_keycode(layer, event.key);
|
|
} else
|
|
#endif
|
|
return keymap_key_to_keycode(layer_switch_get_layer(event.key), event.key);
|
|
}
|
|
|
|
/* Main keycode processing function. Hands off handling to other functions,
|
|
* then processes internal Quantum keycodes, then processes ACTIONs.
|
|
*/
|
|
bool process_record_quantum(keyrecord_t *record) {
|
|
uint16_t keycode = get_record_keycode(record);
|
|
|
|
// This is how you use actions here
|
|
// if (keycode == KC_LEAD) {
|
|
// action_t action;
|
|
// action.code = ACTION_DEFAULT_LAYER_SET(0);
|
|
// process_action(record, action);
|
|
// return false;
|
|
// }
|
|
|
|
#ifdef VELOCIKEY_ENABLE
|
|
if (velocikey_enabled() && record->event.pressed) { velocikey_accelerate(); }
|
|
#endif
|
|
|
|
#ifdef TAP_DANCE_ENABLE
|
|
preprocess_tap_dance(keycode, record);
|
|
#endif
|
|
|
|
#if defined(OLED_DRIVER_ENABLE) && !defined(OLED_DISABLE_TIMEOUT)
|
|
// Wake up oled if user is using those fabulous keys!
|
|
if (record->event.pressed)
|
|
oled_on();
|
|
#endif
|
|
|
|
if (!(
|
|
#if defined(KEY_LOCK_ENABLE)
|
|
// Must run first to be able to mask key_up events.
|
|
process_key_lock(&keycode, record) &&
|
|
#endif
|
|
#if defined(AUDIO_ENABLE) && defined(AUDIO_CLICKY)
|
|
process_clicky(keycode, record) &&
|
|
#endif //AUDIO_CLICKY
|
|
#ifdef HAPTIC_ENABLE
|
|
process_haptic(keycode, record) &&
|
|
#endif //HAPTIC_ENABLE
|
|
#if defined(RGB_MATRIX_ENABLE) && defined(RGB_MATRIX_KEYREACTIVE_ENABLED)
|
|
process_rgb_matrix(keycode, record) &&
|
|
#endif
|
|
process_record_kb(keycode, record) &&
|
|
#if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED)
|
|
process_midi(keycode, record) &&
|
|
#endif
|
|
#ifdef AUDIO_ENABLE
|
|
process_audio(keycode, record) &&
|
|
#endif
|
|
#ifdef STENO_ENABLE
|
|
process_steno(keycode, record) &&
|
|
#endif
|
|
#if (defined(AUDIO_ENABLE) || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))) && !defined(NO_MUSIC_MODE)
|
|
process_music(keycode, record) &&
|
|
#endif
|
|
#ifdef TAP_DANCE_ENABLE
|
|
process_tap_dance(keycode, record) &&
|
|
#endif
|
|
#if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE)
|
|
process_unicode_common(keycode, record) &&
|
|
#endif
|
|
#ifdef LEADER_ENABLE
|
|
process_leader(keycode, record) &&
|
|
#endif
|
|
#ifdef COMBO_ENABLE
|
|
process_combo(keycode, record) &&
|
|
#endif
|
|
#ifdef PRINTING_ENABLE
|
|
process_printer(keycode, record) &&
|
|
#endif
|
|
#ifdef AUTO_SHIFT_ENABLE
|
|
process_auto_shift(keycode, record) &&
|
|
#endif
|
|
#ifdef TERMINAL_ENABLE
|
|
process_terminal(keycode, record) &&
|
|
#endif
|
|
true)) {
|
|
return false;
|
|
}
|
|
|
|
// Shift / paren setup
|
|
|
|
switch(keycode) {
|
|
case RESET:
|
|
if (record->event.pressed) {
|
|
reset_keyboard();
|
|
}
|
|
return false;
|
|
case DEBUG:
|
|
if (record->event.pressed) {
|
|
debug_enable = true;
|
|
print("DEBUG: enabled.\n");
|
|
}
|
|
return false;
|
|
case EEPROM_RESET:
|
|
if (record->event.pressed) {
|
|
eeconfig_init();
|
|
}
|
|
return false;
|
|
#ifdef FAUXCLICKY_ENABLE
|
|
case FC_TOG:
|
|
if (record->event.pressed) {
|
|
FAUXCLICKY_TOGGLE;
|
|
}
|
|
return false;
|
|
case FC_ON:
|
|
if (record->event.pressed) {
|
|
FAUXCLICKY_ON;
|
|
}
|
|
return false;
|
|
case FC_OFF:
|
|
if (record->event.pressed) {
|
|
FAUXCLICKY_OFF;
|
|
}
|
|
return false;
|
|
#endif
|
|
#if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
|
|
case RGB_TOG:
|
|
// Split keyboards need to trigger on key-up for edge-case issue
|
|
#ifndef SPLIT_KEYBOARD
|
|
if (record->event.pressed) {
|
|
#else
|
|
if (!record->event.pressed) {
|
|
#endif
|
|
rgblight_toggle();
|
|
}
|
|
return false;
|
|
case RGB_MODE_FORWARD:
|
|
if (record->event.pressed) {
|
|
uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
|
|
if(shifted) {
|
|
rgblight_step_reverse();
|
|
}
|
|
else {
|
|
rgblight_step();
|
|
}
|
|
}
|
|
return false;
|
|
case RGB_MODE_REVERSE:
|
|
if (record->event.pressed) {
|
|
uint8_t shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT));
|
|
if(shifted) {
|
|
rgblight_step();
|
|
}
|
|
else {
|
|
rgblight_step_reverse();
|
|
}
|
|
}
|
|
return false;
|
|
case RGB_HUI:
|
|
// Split keyboards need to trigger on key-up for edge-case issue
|
|
#ifndef SPLIT_KEYBOARD
|
|
if (record->event.pressed) {
|
|
#else
|
|
if (!record->event.pressed) {
|
|
#endif
|
|
rgblight_increase_hue();
|
|
}
|
|
return false;
|
|
case RGB_HUD:
|
|
// Split keyboards need to trigger on key-up for edge-case issue
|
|
#ifndef SPLIT_KEYBOARD
|
|
if (record->event.pressed) {
|
|
#else
|
|
if (!record->event.pressed) {
|
|
#endif
|
|
rgblight_decrease_hue();
|
|
}
|
|
return false;
|
|
case RGB_SAI:
|
|
// Split keyboards need to trigger on key-up for edge-case issue
|
|
#ifndef SPLIT_KEYBOARD
|
|
if (record->event.pressed) {
|
|
#else
|
|
if (!record->event.pressed) {
|
|
#endif
|
|
rgblight_increase_sat();
|
|
}
|
|
return false;
|
|
case RGB_SAD:
|
|
// Split keyboards need to trigger on key-up for edge-case issue
|
|
#ifndef SPLIT_KEYBOARD
|
|
if (record->event.pressed) {
|
|
#else
|
|
if (!record->event.pressed) {
|
|
#endif
|
|
rgblight_decrease_sat();
|
|
}
|
|
return false;
|
|
case RGB_VAI:
|
|
// Split keyboards need to trigger on key-up for edge-case issue
|
|
#ifndef SPLIT_KEYBOARD
|
|
if (record->event.pressed) {
|
|
#else
|
|
if (!record->event.pressed) {
|
|
#endif
|
|
rgblight_increase_val();
|
|
}
|
|
return false;
|
|
case RGB_VAD:
|
|
// Split keyboards need to trigger on key-up for edge-case issue
|
|
#ifndef SPLIT_KEYBOARD
|
|
if (record->event.pressed) {
|
|
#else
|
|
if (!record->event.pressed) {
|
|
#endif
|
|
rgblight_decrease_val();
|
|
}
|
|
return false;
|
|
case RGB_SPI:
|
|
if (record->event.pressed) {
|
|
rgblight_increase_speed();
|
|
}
|
|
return false;
|
|
case RGB_SPD:
|
|
if (record->event.pressed) {
|
|
rgblight_decrease_speed();
|
|
}
|
|
return false;
|
|
case RGB_MODE_PLAIN:
|
|
if (record->event.pressed) {
|
|
rgblight_mode(RGBLIGHT_MODE_STATIC_LIGHT);
|
|
}
|
|
return false;
|
|
case RGB_MODE_BREATHE:
|
|
#ifdef RGBLIGHT_EFFECT_BREATHING
|
|
if (record->event.pressed) {
|
|
if ((RGBLIGHT_MODE_BREATHING <= rgblight_get_mode()) &&
|
|
(rgblight_get_mode() < RGBLIGHT_MODE_BREATHING_end)) {
|
|
rgblight_step();
|
|
} else {
|
|
rgblight_mode(RGBLIGHT_MODE_BREATHING);
|
|
}
|
|
}
|
|
#endif
|
|
return false;
|
|
case RGB_MODE_RAINBOW:
|
|
#ifdef RGBLIGHT_EFFECT_RAINBOW_MOOD
|
|
if (record->event.pressed) {
|
|
if ((RGBLIGHT_MODE_RAINBOW_MOOD <= rgblight_get_mode()) &&
|
|
(rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_MOOD_end)) {
|
|
rgblight_step();
|
|
} else {
|
|
rgblight_mode(RGBLIGHT_MODE_RAINBOW_MOOD);
|
|
}
|
|
}
|
|
#endif
|
|
return false;
|
|
case RGB_MODE_SWIRL:
|
|
#ifdef RGBLIGHT_EFFECT_RAINBOW_SWIRL
|
|
if (record->event.pressed) {
|
|
if ((RGBLIGHT_MODE_RAINBOW_SWIRL <= rgblight_get_mode()) &&
|
|
(rgblight_get_mode() < RGBLIGHT_MODE_RAINBOW_SWIRL_end)) {
|
|
rgblight_step();
|
|
} else {
|
|
rgblight_mode(RGBLIGHT_MODE_RAINBOW_SWIRL);
|
|
}
|
|
}
|
|
#endif
|
|
return false;
|
|
case RGB_MODE_SNAKE:
|
|
#ifdef RGBLIGHT_EFFECT_SNAKE
|
|
if (record->event.pressed) {
|
|
if ((RGBLIGHT_MODE_SNAKE <= rgblight_get_mode()) &&
|
|
(rgblight_get_mode() < RGBLIGHT_MODE_SNAKE_end)) {
|
|
rgblight_step();
|
|
} else {
|
|
rgblight_mode(RGBLIGHT_MODE_SNAKE);
|
|
}
|
|
}
|
|
#endif
|
|
return false;
|
|
case RGB_MODE_KNIGHT:
|
|
#ifdef RGBLIGHT_EFFECT_KNIGHT
|
|
if (record->event.pressed) {
|
|
if ((RGBLIGHT_MODE_KNIGHT <= rgblight_get_mode()) &&
|
|
(rgblight_get_mode() < RGBLIGHT_MODE_KNIGHT_end)) {
|
|
rgblight_step();
|
|
} else {
|
|
rgblight_mode(RGBLIGHT_MODE_KNIGHT);
|
|
}
|
|
}
|
|
#endif
|
|
return false;
|
|
case RGB_MODE_XMAS:
|
|
#ifdef RGBLIGHT_EFFECT_CHRISTMAS
|
|
if (record->event.pressed) {
|
|
rgblight_mode(RGBLIGHT_MODE_CHRISTMAS);
|
|
}
|
|
#endif
|
|
return false;
|
|
case RGB_MODE_GRADIENT:
|
|
#ifdef RGBLIGHT_EFFECT_STATIC_GRADIENT
|
|
if (record->event.pressed) {
|
|
if ((RGBLIGHT_MODE_STATIC_GRADIENT <= rgblight_get_mode()) &&
|
|
(rgblight_get_mode() < RGBLIGHT_MODE_STATIC_GRADIENT_end)) {
|
|
rgblight_step();
|
|
} else {
|
|
rgblight_mode(RGBLIGHT_MODE_STATIC_GRADIENT);
|
|
}
|
|
}
|
|
#endif
|
|
return false;
|
|
case RGB_MODE_RGBTEST:
|
|
#ifdef RGBLIGHT_EFFECT_RGB_TEST
|
|
if (record->event.pressed) {
|
|
rgblight_mode(RGBLIGHT_MODE_RGB_TEST);
|
|
}
|
|
#endif
|
|
return false;
|
|
#endif // defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
|
|
#ifdef VELOCIKEY_ENABLE
|
|
case VLK_TOG:
|
|
if (record->event.pressed) {
|
|
velocikey_toggle();
|
|
}
|
|
return false;
|
|
#endif
|
|
#ifdef PROTOCOL_LUFA
|
|
case OUT_AUTO:
|
|
if (record->event.pressed) {
|
|
set_output(OUTPUT_AUTO);
|
|
}
|
|
return false;
|
|
case OUT_USB:
|
|
if (record->event.pressed) {
|
|
set_output(OUTPUT_USB);
|
|
}
|
|
return false;
|
|
#ifdef BLUETOOTH_ENABLE
|
|
case OUT_BT:
|
|
if (record->event.pressed) {
|
|
set_output(OUTPUT_BLUETOOTH);
|
|
}
|
|
return false;
|
|
#endif
|
|
#endif
|
|
case MAGIC_SWAP_CONTROL_CAPSLOCK ... MAGIC_TOGGLE_NKRO:
|
|
if (record->event.pressed) {
|
|
// MAGIC actions (BOOTMAGIC without the boot)
|
|
if (!eeconfig_is_enabled()) {
|
|
eeconfig_init();
|
|
}
|
|
/* keymap config */
|
|
keymap_config.raw = eeconfig_read_keymap();
|
|
switch (keycode)
|
|
{
|
|
case MAGIC_SWAP_CONTROL_CAPSLOCK:
|
|
keymap_config.swap_control_capslock = true;
|
|
break;
|
|
case MAGIC_CAPSLOCK_TO_CONTROL:
|
|
keymap_config.capslock_to_control = true;
|
|
break;
|
|
case MAGIC_SWAP_LALT_LGUI:
|
|
keymap_config.swap_lalt_lgui = true;
|
|
break;
|
|
case MAGIC_SWAP_RALT_RGUI:
|
|
keymap_config.swap_ralt_rgui = true;
|
|
break;
|
|
case MAGIC_NO_GUI:
|
|
keymap_config.no_gui = true;
|
|
break;
|
|
case MAGIC_SWAP_GRAVE_ESC:
|
|
keymap_config.swap_grave_esc = true;
|
|
break;
|
|
case MAGIC_SWAP_BACKSLASH_BACKSPACE:
|
|
keymap_config.swap_backslash_backspace = true;
|
|
break;
|
|
case MAGIC_HOST_NKRO:
|
|
keymap_config.nkro = true;
|
|
break;
|
|
case MAGIC_SWAP_ALT_GUI:
|
|
keymap_config.swap_lalt_lgui = true;
|
|
keymap_config.swap_ralt_rgui = true;
|
|
#ifdef AUDIO_ENABLE
|
|
PLAY_SONG(ag_swap_song);
|
|
#endif
|
|
break;
|
|
case MAGIC_UNSWAP_CONTROL_CAPSLOCK:
|
|
keymap_config.swap_control_capslock = false;
|
|
break;
|
|
case MAGIC_UNCAPSLOCK_TO_CONTROL:
|
|
keymap_config.capslock_to_control = false;
|
|
break;
|
|
case MAGIC_UNSWAP_LALT_LGUI:
|
|
keymap_config.swap_lalt_lgui = false;
|
|
break;
|
|
case MAGIC_UNSWAP_RALT_RGUI:
|
|
keymap_config.swap_ralt_rgui = false;
|
|
break;
|
|
case MAGIC_UNNO_GUI:
|
|
keymap_config.no_gui = false;
|
|
break;
|
|
case MAGIC_UNSWAP_GRAVE_ESC:
|
|
keymap_config.swap_grave_esc = false;
|
|
break;
|
|
case MAGIC_UNSWAP_BACKSLASH_BACKSPACE:
|
|
keymap_config.swap_backslash_backspace = false;
|
|
break;
|
|
case MAGIC_UNHOST_NKRO:
|
|
keymap_config.nkro = false;
|
|
break;
|
|
case MAGIC_UNSWAP_ALT_GUI:
|
|
keymap_config.swap_lalt_lgui = false;
|
|
keymap_config.swap_ralt_rgui = false;
|
|
#ifdef AUDIO_ENABLE
|
|
PLAY_SONG(ag_norm_song);
|
|
#endif
|
|
break;
|
|
case MAGIC_TOGGLE_ALT_GUI:
|
|
keymap_config.swap_lalt_lgui = !keymap_config.swap_lalt_lgui;
|
|
keymap_config.swap_ralt_rgui = !keymap_config.swap_ralt_rgui;
|
|
#ifdef AUDIO_ENABLE
|
|
if (keymap_config.swap_ralt_rgui) {
|
|
PLAY_SONG(ag_swap_song);
|
|
} else {
|
|
PLAY_SONG(ag_norm_song);
|
|
}
|
|
#endif
|
|
break;
|
|
case MAGIC_TOGGLE_NKRO:
|
|
keymap_config.nkro = !keymap_config.nkro;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
eeconfig_update_keymap(keymap_config.raw);
|
|
clear_keyboard(); // clear to prevent stuck keys
|
|
|
|
return false;
|
|
}
|
|
break;
|
|
case KC_LSPO: {
|
|
if (record->event.pressed) {
|
|
shift_interrupted[0] = false;
|
|
scs_timer[0] = timer_read ();
|
|
register_mods(MOD_BIT(KC_LSFT));
|
|
}
|
|
else {
|
|
#ifdef DISABLE_SPACE_CADET_ROLLOVER
|
|
if (get_mods() & MOD_BIT(RSPC_MOD)) {
|
|
shift_interrupted[0] = true;
|
|
shift_interrupted[1] = true;
|
|
}
|
|
#endif
|
|
if (!shift_interrupted[0] && timer_elapsed(scs_timer[0]) < TAPPING_TERM) {
|
|
#ifdef DISABLE_SPACE_CADET_MODIFIER
|
|
unregister_mods(MOD_BIT(KC_LSFT));
|
|
#else
|
|
if( LSPO_MOD != KC_LSFT ){
|
|
unregister_mods(MOD_BIT(KC_LSFT));
|
|
register_mods(MOD_BIT(LSPO_MOD));
|
|
}
|
|
#endif
|
|
register_code(LSPO_KEY);
|
|
unregister_code(LSPO_KEY);
|
|
#ifndef DISABLE_SPACE_CADET_MODIFIER
|
|
if( LSPO_MOD != KC_LSFT ){
|
|
unregister_mods(MOD_BIT(LSPO_MOD));
|
|
}
|
|
#endif
|
|
}
|
|
unregister_mods(MOD_BIT(KC_LSFT));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case KC_RSPC: {
|
|
if (record->event.pressed) {
|
|
shift_interrupted[1] = false;
|
|
scs_timer[1] = timer_read ();
|
|
register_mods(MOD_BIT(KC_RSFT));
|
|
}
|
|
else {
|
|
#ifdef DISABLE_SPACE_CADET_ROLLOVER
|
|
if (get_mods() & MOD_BIT(LSPO_MOD)) {
|
|
shift_interrupted[0] = true;
|
|
shift_interrupted[1] = true;
|
|
}
|
|
#endif
|
|
if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
|
|
#ifdef DISABLE_SPACE_CADET_MODIFIER
|
|
unregister_mods(MOD_BIT(KC_RSFT));
|
|
#else
|
|
if( RSPC_MOD != KC_RSFT ){
|
|
unregister_mods(MOD_BIT(KC_RSFT));
|
|
register_mods(MOD_BIT(RSPC_MOD));
|
|
}
|
|
#endif
|
|
register_code(RSPC_KEY);
|
|
unregister_code(RSPC_KEY);
|
|
#ifndef DISABLE_SPACE_CADET_MODIFIER
|
|
if ( RSPC_MOD != KC_RSFT ){
|
|
unregister_mods(MOD_BIT(RSPC_MOD));
|
|
}
|
|
#endif
|
|
}
|
|
unregister_mods(MOD_BIT(KC_RSFT));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case KC_SFTENT: {
|
|
if (record->event.pressed) {
|
|
shift_interrupted[1] = false;
|
|
scs_timer[1] = timer_read ();
|
|
register_mods(MOD_BIT(KC_RSFT));
|
|
}
|
|
else if (!shift_interrupted[1] && timer_elapsed(scs_timer[1]) < TAPPING_TERM) {
|
|
unregister_mods(MOD_BIT(KC_RSFT));
|
|
register_code(SFTENT_KEY);
|
|
unregister_code(SFTENT_KEY);
|
|
}
|
|
else {
|
|
unregister_mods(MOD_BIT(KC_RSFT));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case GRAVE_ESC: {
|
|
uint8_t shifted = get_mods() & ((MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT)
|
|
|MOD_BIT(KC_LGUI)|MOD_BIT(KC_RGUI)));
|
|
|
|
#ifdef GRAVE_ESC_ALT_OVERRIDE
|
|
// if ALT is pressed, ESC is always sent
|
|
// this is handy for the cmd+opt+esc shortcut on macOS, among other things.
|
|
if (get_mods() & (MOD_BIT(KC_LALT) | MOD_BIT(KC_RALT))) {
|
|
shifted = 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef GRAVE_ESC_CTRL_OVERRIDE
|
|
// if CTRL is pressed, ESC is always sent
|
|
// this is handy for the ctrl+shift+esc shortcut on windows, among other things.
|
|
if (get_mods() & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL))) {
|
|
shifted = 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef GRAVE_ESC_GUI_OVERRIDE
|
|
// if GUI is pressed, ESC is always sent
|
|
if (get_mods() & (MOD_BIT(KC_LGUI) | MOD_BIT(KC_RGUI))) {
|
|
shifted = 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef GRAVE_ESC_SHIFT_OVERRIDE
|
|
// if SHIFT is pressed, ESC is always sent
|
|
if (get_mods() & (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT))) {
|
|
shifted = 0;
|
|
}
|
|
#endif
|
|
|
|
if (record->event.pressed) {
|
|
grave_esc_was_shifted = shifted;
|
|
add_key(shifted ? KC_GRAVE : KC_ESCAPE);
|
|
}
|
|
else {
|
|
del_key(grave_esc_was_shifted ? KC_GRAVE : KC_ESCAPE);
|
|
}
|
|
|
|
send_keyboard_report();
|
|
return false;
|
|
}
|
|
|
|
#if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_BREATHING)
|
|
case BL_BRTG: {
|
|
if (record->event.pressed)
|
|
breathing_toggle();
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
default: {
|
|
shift_interrupted[0] = true;
|
|
shift_interrupted[1] = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return process_action_kb(record);
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
const bool ascii_to_shift_lut[0x80] PROGMEM = {
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 1, 1, 1, 1, 1, 1, 0,
|
|
1, 1, 1, 1, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 1, 0, 1, 0, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 0, 0, 0, 1, 1,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 1, 1, 1, 1, 0
|
|
};
|
|
|
|
__attribute__ ((weak))
|
|
const bool ascii_to_altgr_lut[0x80] PROGMEM = {
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
__attribute__ ((weak))
|
|
const uint8_t ascii_to_keycode_lut[0x80] PROGMEM = {
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
KC_BSPC, KC_TAB, KC_ENT, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, KC_ESC, 0, 0, 0, 0,
|
|
KC_SPC, KC_1, KC_QUOT, KC_3, KC_4, KC_5, KC_7, KC_QUOT,
|
|
KC_9, KC_0, KC_8, KC_EQL, KC_COMM, KC_MINS, KC_DOT, KC_SLSH,
|
|
KC_0, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7,
|
|
KC_8, KC_9, KC_SCLN, KC_SCLN, KC_COMM, KC_EQL, KC_DOT, KC_SLSH,
|
|
KC_2, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
|
|
KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
|
|
KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
|
|
KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_6, KC_MINS,
|
|
KC_GRV, KC_A, KC_B, KC_C, KC_D, KC_E, KC_F, KC_G,
|
|
KC_H, KC_I, KC_J, KC_K, KC_L, KC_M, KC_N, KC_O,
|
|
KC_P, KC_Q, KC_R, KC_S, KC_T, KC_U, KC_V, KC_W,
|
|
KC_X, KC_Y, KC_Z, KC_LBRC, KC_BSLS, KC_RBRC, KC_GRV, KC_DEL
|
|
};
|
|
|
|
void send_string(const char *str) {
|
|
send_string_with_delay(str, 0);
|
|
}
|
|
|
|
void send_string_P(const char *str) {
|
|
send_string_with_delay_P(str, 0);
|
|
}
|
|
|
|
void send_string_with_delay(const char *str, uint8_t interval) {
|
|
while (1) {
|
|
char ascii_code = *str;
|
|
if (!ascii_code) break;
|
|
if (ascii_code == SS_TAP_CODE) {
|
|
// tap
|
|
uint8_t keycode = *(++str);
|
|
register_code(keycode);
|
|
unregister_code(keycode);
|
|
} else if (ascii_code == SS_DOWN_CODE) {
|
|
// down
|
|
uint8_t keycode = *(++str);
|
|
register_code(keycode);
|
|
} else if (ascii_code == SS_UP_CODE) {
|
|
// up
|
|
uint8_t keycode = *(++str);
|
|
unregister_code(keycode);
|
|
} else {
|
|
send_char(ascii_code);
|
|
}
|
|
++str;
|
|
// interval
|
|
{ uint8_t ms = interval; while (ms--) wait_ms(1); }
|
|
}
|
|
}
|
|
|
|
void send_string_with_delay_P(const char *str, uint8_t interval) {
|
|
while (1) {
|
|
char ascii_code = pgm_read_byte(str);
|
|
if (!ascii_code) break;
|
|
if (ascii_code == SS_TAP_CODE) {
|
|
// tap
|
|
uint8_t keycode = pgm_read_byte(++str);
|
|
register_code(keycode);
|
|
unregister_code(keycode);
|
|
} else if (ascii_code == SS_DOWN_CODE) {
|
|
// down
|
|
uint8_t keycode = pgm_read_byte(++str);
|
|
register_code(keycode);
|
|
} else if (ascii_code == SS_UP_CODE) {
|
|
// up
|
|
uint8_t keycode = pgm_read_byte(++str);
|
|
unregister_code(keycode);
|
|
} else {
|
|
send_char(ascii_code);
|
|
}
|
|
++str;
|
|
// interval
|
|
{ uint8_t ms = interval; while (ms--) wait_ms(1); }
|
|
}
|
|
}
|
|
|
|
void send_char(char ascii_code) {
|
|
uint8_t keycode = pgm_read_byte(&ascii_to_keycode_lut[(uint8_t)ascii_code]);
|
|
bool is_shifted = pgm_read_byte(&ascii_to_shift_lut[(uint8_t)ascii_code]);
|
|
bool is_altgred = pgm_read_byte(&ascii_to_altgr_lut[(uint8_t)ascii_code]);
|
|
|
|
if (is_shifted) {
|
|
register_code(KC_LSFT);
|
|
}
|
|
if (is_altgred) {
|
|
register_code(KC_RALT);
|
|
}
|
|
tap_code(keycode);
|
|
if (is_altgred) {
|
|
unregister_code(KC_RALT);
|
|
}
|
|
if (is_shifted) {
|
|
unregister_code(KC_LSFT);
|
|
}
|
|
}
|
|
|
|
void set_single_persistent_default_layer(uint8_t default_layer) {
|
|
#if defined(AUDIO_ENABLE) && defined(DEFAULT_LAYER_SONGS)
|
|
PLAY_SONG(default_layer_songs[default_layer]);
|
|
#endif
|
|
eeconfig_update_default_layer(1U<<default_layer);
|
|
default_layer_set(1U<<default_layer);
|
|
}
|
|
|
|
uint32_t update_tri_layer_state(uint32_t state, uint8_t layer1, uint8_t layer2, uint8_t layer3) {
|
|
uint32_t mask12 = (1UL << layer1) | (1UL << layer2);
|
|
uint32_t mask3 = 1UL << layer3;
|
|
return (state & mask12) == mask12 ? (state | mask3) : (state & ~mask3);
|
|
}
|
|
|
|
void update_tri_layer(uint8_t layer1, uint8_t layer2, uint8_t layer3) {
|
|
layer_state_set(update_tri_layer_state(layer_state, layer1, layer2, layer3));
|
|
}
|
|
|
|
void tap_random_base64(void) {
|
|
#if defined(__AVR_ATmega32U4__)
|
|
uint8_t key = (TCNT0 + TCNT1 + TCNT3 + TCNT4) % 64;
|
|
#else
|
|
uint8_t key = rand() % 64;
|
|
#endif
|
|
switch (key) {
|
|
case 0 ... 25:
|
|
register_code(KC_LSFT);
|
|
register_code(key + KC_A);
|
|
unregister_code(key + KC_A);
|
|
unregister_code(KC_LSFT);
|
|
break;
|
|
case 26 ... 51:
|
|
register_code(key - 26 + KC_A);
|
|
unregister_code(key - 26 + KC_A);
|
|
break;
|
|
case 52:
|
|
register_code(KC_0);
|
|
unregister_code(KC_0);
|
|
break;
|
|
case 53 ... 61:
|
|
register_code(key - 53 + KC_1);
|
|
unregister_code(key - 53 + KC_1);
|
|
break;
|
|
case 62:
|
|
register_code(KC_LSFT);
|
|
register_code(KC_EQL);
|
|
unregister_code(KC_EQL);
|
|
unregister_code(KC_LSFT);
|
|
break;
|
|
case 63:
|
|
register_code(KC_SLSH);
|
|
unregister_code(KC_SLSH);
|
|
break;
|
|
}
|
|
}
|
|
|
|
__attribute__((weak))
|
|
void bootmagic_lite(void) {
|
|
// The lite version of TMK's bootmagic based on Wilba.
|
|
// 100% less potential for accidentally making the
|
|
// keyboard do stupid things.
|
|
|
|
// We need multiple scans because debouncing can't be turned off.
|
|
matrix_scan();
|
|
#if defined(DEBOUNCING_DELAY) && DEBOUNCING_DELAY > 0
|
|
wait_ms(DEBOUNCING_DELAY * 2);
|
|
#elif defined(DEBOUNCE) && DEBOUNCE > 0
|
|
wait_ms(DEBOUNCE * 2);
|
|
#else
|
|
wait_ms(30);
|
|
#endif
|
|
matrix_scan();
|
|
|
|
// If the Esc and space bar are held down on power up,
|
|
// reset the EEPROM valid state and jump to bootloader.
|
|
// Assumes Esc is at [0,0].
|
|
// This isn't very generalized, but we need something that doesn't
|
|
// rely on user's keymaps in firmware or EEPROM.
|
|
if (matrix_get_row(BOOTMAGIC_LITE_ROW) & (1 << BOOTMAGIC_LITE_COLUMN)) {
|
|
eeconfig_disable();
|
|
// Jump to bootloader.
|
|
bootloader_jump();
|
|
}
|
|
}
|
|
|
|
void matrix_init_quantum() {
|
|
#ifdef BOOTMAGIC_LITE
|
|
bootmagic_lite();
|
|
#endif
|
|
if (!eeconfig_is_enabled()) {
|
|
eeconfig_init();
|
|
}
|
|
#ifdef BACKLIGHT_ENABLE
|
|
#ifdef LED_MATRIX_ENABLE
|
|
led_matrix_init();
|
|
#else
|
|
backlight_init_ports();
|
|
#endif
|
|
#endif
|
|
#ifdef AUDIO_ENABLE
|
|
audio_init();
|
|
#endif
|
|
#ifdef RGB_MATRIX_ENABLE
|
|
rgb_matrix_init();
|
|
#endif
|
|
#ifdef ENCODER_ENABLE
|
|
encoder_init();
|
|
#endif
|
|
#if defined(UNICODE_ENABLE) || defined(UNICODEMAP_ENABLE) || defined(UCIS_ENABLE)
|
|
unicode_input_mode_init();
|
|
#endif
|
|
#ifdef HAPTIC_ENABLE
|
|
haptic_init();
|
|
#endif
|
|
#ifdef OUTPUT_AUTO_ENABLE
|
|
set_output(OUTPUT_AUTO);
|
|
#endif
|
|
#ifdef OLED_DRIVER_ENABLE
|
|
oled_init(OLED_ROTATION_0);
|
|
#endif
|
|
matrix_init_kb();
|
|
}
|
|
|
|
void matrix_scan_quantum() {
|
|
#if defined(AUDIO_ENABLE) && !defined(NO_MUSIC_MODE)
|
|
matrix_scan_music();
|
|
#endif
|
|
|
|
#ifdef TAP_DANCE_ENABLE
|
|
matrix_scan_tap_dance();
|
|
#endif
|
|
|
|
#ifdef COMBO_ENABLE
|
|
matrix_scan_combo();
|
|
#endif
|
|
|
|
#if defined(BACKLIGHT_ENABLE)
|
|
#if defined(LED_MATRIX_ENABLE)
|
|
led_matrix_task();
|
|
#elif defined(BACKLIGHT_PIN)
|
|
backlight_task();
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef RGB_MATRIX_ENABLE
|
|
rgb_matrix_task();
|
|
#endif
|
|
|
|
#ifdef ENCODER_ENABLE
|
|
encoder_read();
|
|
#endif
|
|
|
|
#ifdef HAPTIC_ENABLE
|
|
haptic_task();
|
|
#endif
|
|
|
|
#ifdef OLED_DRIVER_ENABLE
|
|
oled_task();
|
|
#endif
|
|
|
|
matrix_scan_kb();
|
|
}
|
|
#if defined(BACKLIGHT_ENABLE) && (defined(BACKLIGHT_PIN) || defined(BACKLIGHT_PINS))
|
|
|
|
// The logic is a bit complex, we support 3 setups:
|
|
// 1. hardware PWM when backlight is wired to a PWM pin
|
|
// depending on this pin, we use a different output compare unit
|
|
// 2. software PWM with hardware timers, but the used timer depends
|
|
// on the audio setup (audio wins other backlight)
|
|
// 3. full software PWM
|
|
|
|
#if BACKLIGHT_PIN == B7
|
|
# define HARDWARE_PWM
|
|
# define TCCRxA TCCR1A
|
|
# define TCCRxB TCCR1B
|
|
# define COMxx1 COM1C1
|
|
# define OCRxx OCR1C
|
|
# define ICRx ICR1
|
|
#elif BACKLIGHT_PIN == B6
|
|
# define HARDWARE_PWM
|
|
# define TCCRxA TCCR1A
|
|
# define TCCRxB TCCR1B
|
|
# define COMxx1 COM1B1
|
|
# define OCRxx OCR1B
|
|
# define ICRx ICR1
|
|
#elif BACKLIGHT_PIN == B5
|
|
# define HARDWARE_PWM
|
|
# define TCCRxA TCCR1A
|
|
# define TCCRxB TCCR1B
|
|
# define COMxx1 COM1A1
|
|
# define OCRxx OCR1A
|
|
# define ICRx ICR1
|
|
#elif BACKLIGHT_PIN == C6
|
|
# define HARDWARE_PWM
|
|
# define TCCRxA TCCR3A
|
|
# define TCCRxB TCCR3B
|
|
# define COMxx1 COM1A1
|
|
# define OCRxx OCR3A
|
|
# define ICRx ICR3
|
|
#elif defined(__AVR_ATmega32A__) && BACKLIGHT_PIN == D4
|
|
# define TCCRxA TCCR1A
|
|
# define TCCRxB TCCR1B
|
|
# define COMxx1 COM1B1
|
|
# define OCRxx OCR1B
|
|
# define ICRx ICR1
|
|
# define TIMSK1 TIMSK
|
|
#else
|
|
# if !defined(BACKLIGHT_CUSTOM_DRIVER)
|
|
# if !defined(B5_AUDIO) && !defined(B6_AUDIO) && !defined(B7_AUDIO)
|
|
// timer 1 is not used by audio , backlight can use it
|
|
#pragma message "Using hardware timer 1 with software PWM"
|
|
# define HARDWARE_PWM
|
|
# define BACKLIGHT_PWM_TIMER
|
|
# define TCCRxA TCCR1A
|
|
# define TCCRxB TCCR1B
|
|
# define OCRxx OCR1A
|
|
# define OCRxAH OCR1AH
|
|
# define OCRxAL OCR1AL
|
|
# define TIMERx_COMPA_vect TIMER1_COMPA_vect
|
|
# define TIMERx_OVF_vect TIMER1_OVF_vect
|
|
# define OCIExA OCIE1A
|
|
# define TOIEx TOIE1
|
|
# define ICRx ICR1
|
|
# ifndef TIMSK
|
|
# define TIMSK TIMSK1
|
|
# endif
|
|
# elif !defined(C6_AUDIO) && !defined(C5_AUDIO) && !defined(C4_AUDIO)
|
|
#pragma message "Using hardware timer 3 with software PWM"
|
|
// timer 3 is not used by audio, backlight can use it
|
|
# define HARDWARE_PWM
|
|
# define BACKLIGHT_PWM_TIMER
|
|
# define TCCRxA TCCR3A
|
|
# define TCCRxB TCCR3B
|
|
# define OCRxx OCR3A
|
|
# define OCRxAH OCR3AH
|
|
# define OCRxAL OCR3AL
|
|
# define TIMERx_COMPA_vect TIMER3_COMPA_vect
|
|
# define TIMERx_OVF_vect TIMER3_OVF_vect
|
|
# define OCIExA OCIE3A
|
|
# define TOIEx TOIE3
|
|
# define ICRx ICR1
|
|
# ifndef TIMSK
|
|
# define TIMSK TIMSK3
|
|
# endif
|
|
# else
|
|
#pragma message "Audio in use - using pure software PWM"
|
|
#define NO_HARDWARE_PWM
|
|
# endif
|
|
# else
|
|
#pragma message "Custom driver defined - using pure software PWM"
|
|
#define NO_HARDWARE_PWM
|
|
# endif
|
|
#endif
|
|
|
|
#ifndef BACKLIGHT_ON_STATE
|
|
#define BACKLIGHT_ON_STATE 0
|
|
#endif
|
|
|
|
void backlight_on(uint8_t backlight_pin) {
|
|
#if BACKLIGHT_ON_STATE == 0
|
|
writePinLow(backlight_pin);
|
|
#else
|
|
writePinHigh(backlight_pin);
|
|
#endif
|
|
}
|
|
|
|
void backlight_off(uint8_t backlight_pin) {
|
|
#if BACKLIGHT_ON_STATE == 0
|
|
writePinHigh(backlight_pin);
|
|
#else
|
|
writePinLow(backlight_pin);
|
|
#endif
|
|
}
|
|
|
|
|
|
#if defined(NO_HARDWARE_PWM) || defined(BACKLIGHT_PWM_TIMER) // pwm through software
|
|
|
|
// we support multiple backlight pins
|
|
#ifndef BACKLIGHT_LED_COUNT
|
|
#define BACKLIGHT_LED_COUNT 1
|
|
#endif
|
|
|
|
#if BACKLIGHT_LED_COUNT == 1
|
|
#define BACKLIGHT_PIN_INIT { BACKLIGHT_PIN }
|
|
#else
|
|
#define BACKLIGHT_PIN_INIT BACKLIGHT_PINS
|
|
#endif
|
|
|
|
#define FOR_EACH_LED(x) \
|
|
for (uint8_t i = 0; i < BACKLIGHT_LED_COUNT; i++) \
|
|
{ \
|
|
uint8_t backlight_pin = backlight_pins[i]; \
|
|
{ \
|
|
x \
|
|
} \
|
|
}
|
|
|
|
static const uint8_t backlight_pins[BACKLIGHT_LED_COUNT] = BACKLIGHT_PIN_INIT;
|
|
|
|
#else // full hardware PWM
|
|
|
|
// we support only one backlight pin
|
|
static const uint8_t backlight_pin = BACKLIGHT_PIN;
|
|
#define FOR_EACH_LED(x) x
|
|
|
|
#endif
|
|
|
|
#ifdef NO_HARDWARE_PWM
|
|
__attribute__((weak))
|
|
void backlight_init_ports(void)
|
|
{
|
|
// Setup backlight pin as output and output to on state.
|
|
FOR_EACH_LED(
|
|
setPinOutput(backlight_pin);
|
|
backlight_on(backlight_pin);
|
|
)
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void backlight_set(uint8_t level) {}
|
|
|
|
uint8_t backlight_tick = 0;
|
|
|
|
#ifndef BACKLIGHT_CUSTOM_DRIVER
|
|
void backlight_task(void) {
|
|
if ((0xFFFF >> ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) {
|
|
FOR_EACH_LED(
|
|
backlight_on(backlight_pin);
|
|
)
|
|
}
|
|
else {
|
|
FOR_EACH_LED(
|
|
backlight_off(backlight_pin);
|
|
)
|
|
}
|
|
backlight_tick = (backlight_tick + 1) % 16;
|
|
}
|
|
#endif
|
|
|
|
#ifdef BACKLIGHT_BREATHING
|
|
#ifndef BACKLIGHT_CUSTOM_DRIVER
|
|
#error "Backlight breathing only available with hardware PWM. Please disable."
|
|
#endif
|
|
#endif
|
|
|
|
#else // hardware pwm through timer
|
|
|
|
#ifdef BACKLIGHT_PWM_TIMER
|
|
|
|
// The idea of software PWM assisted by hardware timers is the following
|
|
// we use the hardware timer in fast PWM mode like for hardware PWM, but
|
|
// instead of letting the Output Match Comparator control the led pin
|
|
// (which is not possible since the backlight is not wired to PWM pins on the
|
|
// CPU), we do the LED on/off by oursleves.
|
|
// The timer is setup to count up to 0xFFFF, and we set the Output Compare
|
|
// register to the current 16bits backlight level (after CIE correction).
|
|
// This means the CPU will trigger a compare match interrupt when the counter
|
|
// reaches the backlight level, where we turn off the LEDs,
|
|
// but also an overflow interrupt when the counter rolls back to 0,
|
|
// in which we're going to turn on the LEDs.
|
|
// The LED will then be on for OCRxx/0xFFFF time, adjusted every 244Hz.
|
|
|
|
// Triggered when the counter reaches the OCRx value
|
|
ISR(TIMERx_COMPA_vect) {
|
|
FOR_EACH_LED(
|
|
backlight_off(backlight_pin);
|
|
)
|
|
}
|
|
|
|
// Triggered when the counter reaches the TOP value
|
|
// this one triggers at F_CPU/65536 =~ 244 Hz
|
|
ISR(TIMERx_OVF_vect) {
|
|
#ifdef BACKLIGHT_BREATHING
|
|
breathing_task();
|
|
#endif
|
|
// for very small values of OCRxx (or backlight level)
|
|
// we can't guarantee this whole code won't execute
|
|
// at the same time as the compare match interrupt
|
|
// which means that we might turn on the leds while
|
|
// trying to turn them off, leading to flickering
|
|
// artifacts (especially while breathing, because breathing_task
|
|
// takes many computation cycles).
|
|
// so better not turn them on while the counter TOP is very low.
|
|
if (OCRxx > 256) {
|
|
FOR_EACH_LED(
|
|
backlight_on(backlight_pin);
|
|
)
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#define TIMER_TOP 0xFFFFU
|
|
|
|
// See http://jared.geek.nz/2013/feb/linear-led-pwm
|
|
static uint16_t cie_lightness(uint16_t v) {
|
|
if (v <= 5243) // if below 8% of max
|
|
return v / 9; // same as dividing by 900%
|
|
else {
|
|
uint32_t y = (((uint32_t) v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
|
|
// to get a useful result with integer division, we shift left in the expression above
|
|
// and revert what we've done again after squaring.
|
|
y = y * y * y >> 8;
|
|
if (y > 0xFFFFUL) // prevent overflow
|
|
return 0xFFFFU;
|
|
else
|
|
return (uint16_t) y;
|
|
}
|
|
}
|
|
|
|
// range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
|
|
static inline void set_pwm(uint16_t val) {
|
|
OCRxx = val;
|
|
}
|
|
|
|
#ifndef BACKLIGHT_CUSTOM_DRIVER
|
|
__attribute__ ((weak))
|
|
void backlight_set(uint8_t level) {
|
|
if (level > BACKLIGHT_LEVELS)
|
|
level = BACKLIGHT_LEVELS;
|
|
|
|
if (level == 0) {
|
|
#ifdef BACKLIGHT_PWM_TIMER
|
|
if (OCRxx) {
|
|
TIMSK &= ~(_BV(OCIExA));
|
|
TIMSK &= ~(_BV(TOIEx));
|
|
FOR_EACH_LED(
|
|
backlight_off(backlight_pin);
|
|
)
|
|
}
|
|
#else
|
|
// Turn off PWM control on backlight pin
|
|
TCCRxA &= ~(_BV(COMxx1));
|
|
#endif
|
|
} else {
|
|
#ifdef BACKLIGHT_PWM_TIMER
|
|
if (!OCRxx) {
|
|
TIMSK |= _BV(OCIExA);
|
|
TIMSK |= _BV(TOIEx);
|
|
}
|
|
#else
|
|
// Turn on PWM control of backlight pin
|
|
TCCRxA |= _BV(COMxx1);
|
|
#endif
|
|
}
|
|
// Set the brightness
|
|
set_pwm(cie_lightness(TIMER_TOP * (uint32_t)level / BACKLIGHT_LEVELS));
|
|
}
|
|
|
|
void backlight_task(void) {}
|
|
#endif // BACKLIGHT_CUSTOM_DRIVER
|
|
|
|
#ifdef BACKLIGHT_BREATHING
|
|
|
|
#define BREATHING_NO_HALT 0
|
|
#define BREATHING_HALT_OFF 1
|
|
#define BREATHING_HALT_ON 2
|
|
#define BREATHING_STEPS 128
|
|
|
|
static uint8_t breathing_period = BREATHING_PERIOD;
|
|
static uint8_t breathing_halt = BREATHING_NO_HALT;
|
|
static uint16_t breathing_counter = 0;
|
|
|
|
#ifdef BACKLIGHT_PWM_TIMER
|
|
static bool breathing = false;
|
|
|
|
bool is_breathing(void) {
|
|
return breathing;
|
|
}
|
|
|
|
#define breathing_interrupt_enable() do { breathing = true; } while (0)
|
|
#define breathing_interrupt_disable() do { breathing = false; } while (0)
|
|
#else
|
|
|
|
bool is_breathing(void) {
|
|
return !!(TIMSK1 & _BV(TOIE1));
|
|
}
|
|
|
|
#define breathing_interrupt_enable() do {TIMSK1 |= _BV(TOIE1);} while (0)
|
|
#define breathing_interrupt_disable() do {TIMSK1 &= ~_BV(TOIE1);} while (0)
|
|
#endif
|
|
|
|
#define breathing_min() do {breathing_counter = 0;} while (0)
|
|
#define breathing_max() do {breathing_counter = breathing_period * 244 / 2;} while (0)
|
|
|
|
void breathing_enable(void)
|
|
{
|
|
breathing_counter = 0;
|
|
breathing_halt = BREATHING_NO_HALT;
|
|
breathing_interrupt_enable();
|
|
}
|
|
|
|
void breathing_pulse(void)
|
|
{
|
|
if (get_backlight_level() == 0)
|
|
breathing_min();
|
|
else
|
|
breathing_max();
|
|
breathing_halt = BREATHING_HALT_ON;
|
|
breathing_interrupt_enable();
|
|
}
|
|
|
|
void breathing_disable(void)
|
|
{
|
|
breathing_interrupt_disable();
|
|
// Restore backlight level
|
|
backlight_set(get_backlight_level());
|
|
}
|
|
|
|
void breathing_self_disable(void)
|
|
{
|
|
if (get_backlight_level() == 0)
|
|
breathing_halt = BREATHING_HALT_OFF;
|
|
else
|
|
breathing_halt = BREATHING_HALT_ON;
|
|
}
|
|
|
|
void breathing_toggle(void) {
|
|
if (is_breathing())
|
|
breathing_disable();
|
|
else
|
|
breathing_enable();
|
|
}
|
|
|
|
void breathing_period_set(uint8_t value)
|
|
{
|
|
if (!value)
|
|
value = 1;
|
|
breathing_period = value;
|
|
}
|
|
|
|
void breathing_period_default(void) {
|
|
breathing_period_set(BREATHING_PERIOD);
|
|
}
|
|
|
|
void breathing_period_inc(void)
|
|
{
|
|
breathing_period_set(breathing_period+1);
|
|
}
|
|
|
|
void breathing_period_dec(void)
|
|
{
|
|
breathing_period_set(breathing_period-1);
|
|
}
|
|
|
|
/* To generate breathing curve in python:
|
|
* from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
|
|
*/
|
|
static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
|
|
|
|
// Use this before the cie_lightness function.
|
|
static inline uint16_t scale_backlight(uint16_t v) {
|
|
return v / BACKLIGHT_LEVELS * get_backlight_level();
|
|
}
|
|
|
|
#ifdef BACKLIGHT_PWM_TIMER
|
|
void breathing_task(void)
|
|
#else
|
|
/* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
|
|
* about 244 times per second.
|
|
*/
|
|
ISR(TIMER1_OVF_vect)
|
|
#endif
|
|
{
|
|
uint16_t interval = (uint16_t) breathing_period * 244 / BREATHING_STEPS;
|
|
// resetting after one period to prevent ugly reset at overflow.
|
|
breathing_counter = (breathing_counter + 1) % (breathing_period * 244);
|
|
uint8_t index = breathing_counter / interval % BREATHING_STEPS;
|
|
|
|
if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) ||
|
|
((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1)))
|
|
{
|
|
breathing_interrupt_disable();
|
|
}
|
|
|
|
set_pwm(cie_lightness(scale_backlight((uint16_t) pgm_read_byte(&breathing_table[index]) * 0x0101U)));
|
|
}
|
|
|
|
#endif // BACKLIGHT_BREATHING
|
|
|
|
__attribute__ ((weak))
|
|
void backlight_init_ports(void)
|
|
{
|
|
// Setup backlight pin as output and output to on state.
|
|
FOR_EACH_LED(
|
|
setPinOutput(backlight_pin);
|
|
backlight_on(backlight_pin);
|
|
)
|
|
|
|
// I could write a wall of text here to explain... but TL;DW
|
|
// Go read the ATmega32u4 datasheet.
|
|
// And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
|
|
|
|
#ifdef BACKLIGHT_PWM_TIMER
|
|
// TimerX setup, Fast PWM mode count to TOP set in ICRx
|
|
TCCRxA = _BV(WGM11); // = 0b00000010;
|
|
// clock select clk/1
|
|
TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
|
|
#else // hardware PWM
|
|
// Pin PB7 = OCR1C (Timer 1, Channel C)
|
|
// Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
|
|
// (i.e. start high, go low when counter matches.)
|
|
// WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
|
|
// Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
|
|
|
|
/*
|
|
14.8.3:
|
|
"In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]."
|
|
"In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15)."
|
|
*/
|
|
TCCRxA = _BV(COMxx1) | _BV(WGM11); // = 0b00001010;
|
|
TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
|
|
#endif
|
|
// Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
|
|
ICRx = TIMER_TOP;
|
|
|
|
backlight_init();
|
|
#ifdef BACKLIGHT_BREATHING
|
|
breathing_enable();
|
|
#endif
|
|
}
|
|
|
|
#endif // hardware backlight
|
|
|
|
#else // no backlight
|
|
|
|
__attribute__ ((weak))
|
|
void backlight_init_ports(void) {}
|
|
|
|
__attribute__ ((weak))
|
|
void backlight_set(uint8_t level) {}
|
|
|
|
#endif // backlight
|
|
|
|
#ifdef HD44780_ENABLED
|
|
#include "hd44780.h"
|
|
#endif
|
|
|
|
|
|
// Functions for spitting out values
|
|
//
|
|
|
|
void send_dword(uint32_t number) { // this might not actually work
|
|
uint16_t word = (number >> 16);
|
|
send_word(word);
|
|
send_word(number & 0xFFFFUL);
|
|
}
|
|
|
|
void send_word(uint16_t number) {
|
|
uint8_t byte = number >> 8;
|
|
send_byte(byte);
|
|
send_byte(number & 0xFF);
|
|
}
|
|
|
|
void send_byte(uint8_t number) {
|
|
uint8_t nibble = number >> 4;
|
|
send_nibble(nibble);
|
|
send_nibble(number & 0xF);
|
|
}
|
|
|
|
void send_nibble(uint8_t number) {
|
|
switch (number) {
|
|
case 0:
|
|
register_code(KC_0);
|
|
unregister_code(KC_0);
|
|
break;
|
|
case 1 ... 9:
|
|
register_code(KC_1 + (number - 1));
|
|
unregister_code(KC_1 + (number - 1));
|
|
break;
|
|
case 0xA ... 0xF:
|
|
register_code(KC_A + (number - 0xA));
|
|
unregister_code(KC_A + (number - 0xA));
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
__attribute__((weak))
|
|
uint16_t hex_to_keycode(uint8_t hex)
|
|
{
|
|
hex = hex & 0xF;
|
|
if (hex == 0x0) {
|
|
return KC_0;
|
|
} else if (hex < 0xA) {
|
|
return KC_1 + (hex - 0x1);
|
|
} else {
|
|
return KC_A + (hex - 0xA);
|
|
}
|
|
}
|
|
|
|
void api_send_unicode(uint32_t unicode) {
|
|
#ifdef API_ENABLE
|
|
uint8_t chunk[4];
|
|
dword_to_bytes(unicode, chunk);
|
|
MT_SEND_DATA(DT_UNICODE, chunk, 5);
|
|
#endif
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void led_set_user(uint8_t usb_led) {
|
|
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void led_set_kb(uint8_t usb_led) {
|
|
led_set_user(usb_led);
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void led_init_ports(void)
|
|
{
|
|
|
|
}
|
|
|
|
__attribute__ ((weak))
|
|
void led_set(uint8_t usb_led)
|
|
{
|
|
|
|
// Example LED Code
|
|
//
|
|
// // Using PE6 Caps Lock LED
|
|
// if (usb_led & (1<<USB_LED_CAPS_LOCK))
|
|
// {
|
|
// // Output high.
|
|
// DDRE |= (1<<6);
|
|
// PORTE |= (1<<6);
|
|
// }
|
|
// else
|
|
// {
|
|
// // Output low.
|
|
// DDRE &= ~(1<<6);
|
|
// PORTE &= ~(1<<6);
|
|
// }
|
|
|
|
#if defined(BACKLIGHT_CAPS_LOCK) && defined(BACKLIGHT_ENABLE)
|
|
// Use backlight as Caps Lock indicator
|
|
uint8_t bl_toggle_lvl = 0;
|
|
|
|
if (IS_LED_ON(usb_led, USB_LED_CAPS_LOCK) && !backlight_config.enable) {
|
|
// Turning Caps Lock ON and backlight is disabled in config
|
|
// Toggling backlight to the brightest level
|
|
bl_toggle_lvl = BACKLIGHT_LEVELS;
|
|
} else if (IS_LED_OFF(usb_led, USB_LED_CAPS_LOCK) && backlight_config.enable) {
|
|
// Turning Caps Lock OFF and backlight is enabled in config
|
|
// Toggling backlight and restoring config level
|
|
bl_toggle_lvl = backlight_config.level;
|
|
}
|
|
|
|
// Set level without modify backlight_config to keep ability to restore state
|
|
backlight_set(bl_toggle_lvl);
|
|
#endif
|
|
|
|
led_set_kb(usb_led);
|
|
}
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
// Override these functions in your keymap file to play different tunes on
|
|
// different events such as startup and bootloader jump
|
|
|
|
__attribute__ ((weak))
|
|
void startup_user() {}
|
|
|
|
__attribute__ ((weak))
|
|
void shutdown_user() {}
|
|
|
|
//------------------------------------------------------------------------------
|