mirror of
https://github.com/qmk/qmk_firmware.git
synced 2024-11-23 03:42:59 +00:00
29f64d7a93
This reworks how the tap-dance feature works: instead of one global state, we have a state for each tap-dance key, so we can cancel them when another tap-dance key is in flight. This fixes #527. Since we have a state for each key, we can avoid situation where a keyup would mess with our global state. This fixes #563. And while here, we also make sure to fire events only once, and this fixes #574. There is one breaking change, though: tap-dance debugging support was removed, because dumping the whole state would increase the firmware size too much. Any keymap that made use of this, will have to be updated (but there's no such keymap in the repo). Also, there's a nice trick used in this rework: we need to iterate through tap_dance_actions in a few places, to check for timeouts, and so on. For this, we'd need to know the size of the array. We can't discover that at compile-time, because tap-dance gets compiled separately. We'd like to avoid having to terminate the list with a sentinel value, because that would require updates to all keymaps that use the feature. So, we keep track of the highest tap-dance code seen so far, and iterate until that index. Signed-off-by: Gergely Nagy <algernon@madhouse-project.org>
135 lines
3.5 KiB
C
135 lines
3.5 KiB
C
#include "quantum.h"
|
|
#include "action_tapping.h"
|
|
|
|
static uint16_t last_td;
|
|
static int8_t highest_td = -1;
|
|
|
|
void qk_tap_dance_pair_finished (qk_tap_dance_state_t *state, void *user_data) {
|
|
qk_tap_dance_pair_t *pair = (qk_tap_dance_pair_t *)user_data;
|
|
|
|
if (state->count == 1) {
|
|
register_code (pair->kc1);
|
|
} else if (state->count == 2) {
|
|
register_code (pair->kc2);
|
|
}
|
|
}
|
|
|
|
void qk_tap_dance_pair_reset (qk_tap_dance_state_t *state, void *user_data) {
|
|
qk_tap_dance_pair_t *pair = (qk_tap_dance_pair_t *)user_data;
|
|
|
|
if (state->count == 1) {
|
|
unregister_code (pair->kc1);
|
|
} else if (state->count == 2) {
|
|
unregister_code (pair->kc2);
|
|
}
|
|
}
|
|
|
|
static inline void _process_tap_dance_action_fn (qk_tap_dance_state_t *state,
|
|
void *user_data,
|
|
qk_tap_dance_user_fn_t fn)
|
|
{
|
|
if (fn) {
|
|
fn(state, user_data);
|
|
}
|
|
}
|
|
|
|
static inline void process_tap_dance_action_on_each_tap (qk_tap_dance_action_t *action)
|
|
{
|
|
_process_tap_dance_action_fn (&action->state, action->user_data, action->fn.on_each_tap);
|
|
}
|
|
|
|
static inline void process_tap_dance_action_on_dance_finished (qk_tap_dance_action_t *action)
|
|
{
|
|
if (action->state.finished)
|
|
return;
|
|
action->state.finished = true;
|
|
_process_tap_dance_action_fn (&action->state, action->user_data, action->fn.on_dance_finished);
|
|
}
|
|
|
|
static inline void process_tap_dance_action_on_reset (qk_tap_dance_action_t *action)
|
|
{
|
|
_process_tap_dance_action_fn (&action->state, action->user_data, action->fn.on_reset);
|
|
}
|
|
|
|
bool process_tap_dance(uint16_t keycode, keyrecord_t *record) {
|
|
uint16_t idx = keycode - QK_TAP_DANCE;
|
|
qk_tap_dance_action_t *action;
|
|
|
|
if (last_td && last_td != keycode) {
|
|
(&tap_dance_actions[last_td - QK_TAP_DANCE])->state.interrupted = true;
|
|
}
|
|
|
|
switch(keycode) {
|
|
case QK_TAP_DANCE ... QK_TAP_DANCE_MAX:
|
|
if ((int16_t)idx > highest_td)
|
|
highest_td = idx;
|
|
action = &tap_dance_actions[idx];
|
|
|
|
action->state.keycode = keycode;
|
|
action->state.pressed = record->event.pressed;
|
|
if (record->event.pressed) {
|
|
action->state.count++;
|
|
action->state.timer = timer_read();
|
|
|
|
if (last_td && last_td != keycode) {
|
|
qk_tap_dance_action_t *paction = &tap_dance_actions[last_td - QK_TAP_DANCE];
|
|
paction->state.interrupted = true;
|
|
process_tap_dance_action_on_dance_finished (paction);
|
|
reset_tap_dance (&paction->state);
|
|
}
|
|
}
|
|
last_td = keycode;
|
|
|
|
break;
|
|
|
|
default:
|
|
if (!record->event.pressed)
|
|
return true;
|
|
|
|
if (highest_td == -1)
|
|
return true;
|
|
|
|
for (int i = 0; i <= highest_td; i++) {
|
|
action = &tap_dance_actions[i];
|
|
if (action->state.count == 0)
|
|
continue;
|
|
action->state.interrupted = true;
|
|
process_tap_dance_action_on_dance_finished (action);
|
|
reset_tap_dance (&action->state);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void matrix_scan_tap_dance () {
|
|
if (highest_td == -1)
|
|
return;
|
|
|
|
for (int i = 0; i <= highest_td; i++) {
|
|
qk_tap_dance_action_t *action = &tap_dance_actions[i];
|
|
|
|
if (action->state.count && timer_elapsed (action->state.timer) > TAPPING_TERM) {
|
|
process_tap_dance_action_on_dance_finished (action);
|
|
reset_tap_dance (&action->state);
|
|
}
|
|
}
|
|
}
|
|
|
|
void reset_tap_dance (qk_tap_dance_state_t *state) {
|
|
qk_tap_dance_action_t *action;
|
|
|
|
if (state->pressed)
|
|
return;
|
|
|
|
action = &tap_dance_actions[state->keycode - QK_TAP_DANCE];
|
|
|
|
process_tap_dance_action_on_reset (action);
|
|
|
|
state->count = 0;
|
|
state->interrupted = false;
|
|
state->finished = false;
|
|
last_td = 0;
|
|
}
|