#include "ergodox_infinity.h" #include #include #include #include "eeconfig.h" #define RED_PIN 1 #define GREEN_PIN 2 #define BLUE_PIN 3 #define CHANNEL_RED FTM0->CHANNEL[0] #define CHANNEL_GREEN FTM0->CHANNEL[1] #define CHANNEL_BLUE FTM0->CHANNEL[2] #define RGB_PORT PORTC #define RGB_PORT_GPIO GPIOC // Base FTM clock selection (72 MHz system clock) // @ 0xFFFF period, 72 MHz / (0xFFFF * 2) = Actual period // Higher pre-scalar will use the most power (also look the best) // Pre-scalar calculations // 0 - 72 MHz -> 549 Hz // 1 - 36 MHz -> 275 Hz // 2 - 18 MHz -> 137 Hz // 3 - 9 MHz -> 69 Hz (Slightly visible flicker) // 4 - 4 500 kHz -> 34 Hz (Visible flickering) // 5 - 2 250 kHz -> 17 Hz // 6 - 1 125 kHz -> 9 Hz // 7 - 562 500 Hz -> 4 Hz // Using a higher pre-scalar without flicker is possible but FTM0_MOD will need to be reduced // Which will reduce the brightness range #define PRESCALAR_DEFINE 0 void lcd_backlight_hal_init(void) { // Setup Backlight SIM->SCGC6 |= SIM_SCGC6_FTM0; FTM0->CNT = 0; // Reset counter // PWM Period // 16-bit maximum FTM0->MOD = 0xFFFF; // Set FTM to PWM output - Edge Aligned, Low-true pulses #define CNSC_MODE FTM_SC_CPWMS | FTM_SC_PS(4) | FTM_SC_CLKS(0) CHANNEL_RED.CnSC = CNSC_MODE; CHANNEL_GREEN.CnSC = CNSC_MODE; CHANNEL_BLUE.CnSC = CNSC_MODE; // System clock, /w prescalar setting FTM0->SC = FTM_SC_CLKS(1) | FTM_SC_PS(PRESCALAR_DEFINE); CHANNEL_RED.CnV = 0; CHANNEL_GREEN.CnV = 0; CHANNEL_BLUE.CnV = 0; RGB_PORT_GPIO->PDDR |= (1 << RED_PIN); RGB_PORT_GPIO->PDDR |= (1 << GREEN_PIN); RGB_PORT_GPIO->PDDR |= (1 << BLUE_PIN); #define RGB_MODE PORTx_PCRn_SRE | PORTx_PCRn_DSE | PORTx_PCRn_MUX(4) RGB_PORT->PCR[RED_PIN] = RGB_MODE; RGB_PORT->PCR[GREEN_PIN] = RGB_MODE; RGB_PORT->PCR[BLUE_PIN] = RGB_MODE; } static uint16_t cie_lightness(uint16_t v) { // The CIE 1931 formula for lightness // Y = luminance (output) 0-1 // L = lightness input 0 - 100 // Y = (L* / 902.3) if L* <= 8 // Y = ((L* + 16) / 116)^3 if L* > 8 float l = 100.0f * (v / 65535.0f); float y = 0.0f; if (l <= 8.0f) { y = l / 902.3; } else { y = ((l + 16.0f) / 116.0f); y = y * y * y; if (y > 1.0f) { y = 1.0f; } } return y * 65535.0f; } void ergodox_infinity_lcd_color(uint16_t r, uint16_t g, uint16_t b) { CHANNEL_RED.CnV = cie_lightness(r); CHANNEL_GREEN.CnV = cie_lightness(g); CHANNEL_BLUE.CnV = cie_lightness(b); } __attribute__ ((weak)) void matrix_init_user(void) {} __attribute__ ((weak)) void matrix_scan_user(void) {} void keyboard_pre_init_kb(void) { // The backlight always has to be initialized, otherwise it will stay lit lcd_backlight_hal_init(); #ifdef ST7565_ENABLE ergodox_infinity_lcd_color(UINT16_MAX / 2, UINT16_MAX / 2, UINT16_MAX / 2); #endif keyboard_pre_init_user(); } void matrix_init_kb(void) { // put your keyboard start-up code here // runs once when the firmware starts up #ifdef LED_MATRIX_ENABLE /* * Since K20x is stuck with a 32 byte EEPROM (see tmk_core/common/chibios/eeprom_teensy.c), * and neither led_matrix_eeconfig.speed or .flags fit in this boundary, just force their values to default on boot. */ led_matrix_set_speed(LED_MATRIX_DEFAULT_SPD); led_matrix_set_flags(LED_FLAG_ALL); #endif matrix_init_user(); } __attribute__ ((weak)) void ergodox_board_led_on(void) {} __attribute__ ((weak)) void ergodox_right_led_1_on(void) {} __attribute__ ((weak)) void ergodox_right_led_2_on(void) {} __attribute__ ((weak)) void ergodox_right_led_3_on(void) {} __attribute__ ((weak)) void ergodox_board_led_off(void) {} __attribute__ ((weak)) void ergodox_right_led_1_off(void) {} __attribute__ ((weak)) void ergodox_right_led_2_off(void) {} __attribute__ ((weak)) void ergodox_right_led_3_off(void) {} __attribute__ ((weak)) void ergodox_right_led_1_set(uint8_t n) {} __attribute__ ((weak)) void ergodox_right_led_2_set(uint8_t n) {} __attribute__ ((weak)) void ergodox_right_led_3_set(uint8_t n) {} #ifdef SWAP_HANDS_ENABLE __attribute__ ((weak)) const keypos_t PROGMEM hand_swap_config[MATRIX_ROWS][MATRIX_COLS] = { {{0, 9}, {1, 9}, {2, 9}, {3, 9}, {4, 9}}, {{0, 10}, {1, 10}, {2, 10}, {3, 10}, {4, 10}}, {{0, 11}, {1, 11}, {2, 11}, {3, 11}, {4, 11}}, {{0, 12}, {1, 12}, {2, 12}, {3, 12}, {4, 12}}, {{0, 13}, {1, 13}, {2, 13}, {3, 13}, {4, 13}}, {{0, 14}, {1, 14}, {2, 14}, {3, 14}, {4, 14}}, {{0, 15}, {1, 15}, {2, 15}, {3, 15}, {4, 15}}, {{0, 16}, {1, 16}, {2, 16}, {3, 16}, {4, 16}}, {{0, 17}, {1, 17}, {2, 17}, {3, 17}, {4, 17}}, {{0, 0}, {1, 0}, {2, 0}, {3, 0}, {4, 0}}, {{0, 1}, {1, 1}, {2, 1}, {3, 1}, {4, 1}}, {{0, 2}, {1, 2}, {2, 2}, {3, 2}, {4, 2}}, {{0, 3}, {1, 3}, {2, 3}, {3, 3}, {4, 3}}, {{0, 4}, {1, 4}, {2, 4}, {3, 4}, {4, 4}}, {{0, 5}, {1, 5}, {2, 5}, {3, 5}, {4, 5}}, {{0, 6}, {1, 6}, {2, 6}, {3, 6}, {4, 6}}, {{0, 7}, {1, 7}, {2, 7}, {3, 7}, {4, 7}}, {{0, 8}, {1, 8}, {2, 8}, {3, 8}, {4, 8}}, }; #endif #ifdef LED_MATRIX_ENABLE const is31fl3731_led_t PROGMEM g_is31fl3731_leds[IS31FL3731_LED_COUNT] = { // The numbers in the comments are the led numbers DXX on the PCB /* Refer to IS31 manual for these locations * driver * | LED address * | | */ // Left half // 45 44 43 42 41 40 39 { 0, C2_2 }, { 0, C1_2 }, { 0, C5_1 }, { 0, C4_1 }, { 0, C3_1 }, { 0, C2_1 }, { 0, C1_1 }, // 52 51 50 49 48 47 46 { 0, C4_3 }, { 0, C3_3 }, { 0, C2_3 }, { 0, C1_3 }, { 0, C5_2 }, { 0, C4_2 }, { 0, C3_2 }, // 58 57 56 55 54 53 { 0, C5_4 }, { 0, C4_4 }, { 0, C3_4 }, { 0, C2_4 }, { 0, C1_4 }, { 0, C5_3 }, // 67 66 65 64 63 62 61 { 0, C4_6 }, { 0, C3_6 }, { 0, C2_6 }, { 0, C1_6 }, { 0, C5_5 }, { 0, C4_5 }, { 0, C3_5 }, // 76 75 74 73 72 { 0, C4_8 }, { 0, C3_8 }, { 0, C2_8 }, { 0, C1_8 }, { 0, C4_7 }, // 60 59 { 0, C2_5 }, { 0, C1_5 }, // 68 { 0, C5_6 }, // 71 70 69 { 0, C3_7 }, { 0, C2_7 }, { 0, C1_7 }, // Right half (mirrored) // Due to how LED_MATRIX_SPLIT is implemented, only the first half of g_is31fl3731_leds is actually used. // Luckily, the right half has the same LED pinouts, just mirrored. // 45 44 43 42 41 40 39 { 0, C2_2 }, { 0, C1_2 }, { 0, C5_1 }, { 0, C4_1 }, { 0, C3_1 }, { 0, C2_1 }, { 0, C1_1 }, // 52 51 50 49 48 47 46 { 0, C4_3 }, { 0, C3_3 }, { 0, C2_3 }, { 0, C1_3 }, { 0, C5_2 }, { 0, C4_2 }, { 0, C3_2 }, // 58 57 56 55 54 53 { 0, C5_4 }, { 0, C4_4 }, { 0, C3_4 }, { 0, C2_4 }, { 0, C1_4 }, { 0, C5_3 }, // 67 66 65 64 63 62 61 { 0, C4_6 }, { 0, C3_6 }, { 0, C2_6 }, { 0, C1_6 }, { 0, C5_5 }, { 0, C4_5 }, { 0, C3_5 }, // 76 75 74 73 72 { 0, C4_8 }, { 0, C3_8 }, { 0, C2_8 }, { 0, C1_8 }, { 0, C4_7 }, // 60 59 { 0, C2_5 }, { 0, C1_5 }, // 68 { 0, C5_6 }, // 71 70 69 { 0, C3_7 }, { 0, C2_7 }, { 0, C1_7 }, }; int led_matrix_led_index(int index) { return index; } #endif #ifdef ST7565_ENABLE __attribute__((weak)) void st7565_on_user(void) { ergodox_infinity_lcd_color(UINT16_MAX / 2, UINT16_MAX / 2, UINT16_MAX / 2); } __attribute__((weak)) void st7565_off_user(void) { ergodox_infinity_lcd_color(0, 0, 0); } static void format_layer_bitmap_string(char* buffer, uint8_t offset) { for (int i = 0; i < 16 && i + offset < MAX_LAYER; i++) { if (i == 0 || i == 4 || i == 8 || i == 12) { *buffer = ' '; ++buffer; } uint8_t layer = i + offset; if (layer_state_cmp(default_layer_state, layer)) { *buffer = 'D'; } else if (layer_state_is(layer)) { *buffer = '1'; } else { *buffer = '_'; } ++buffer; } *buffer = 0; } __attribute__((weak)) void st7565_task_user(void) { if (is_keyboard_master()) { // Draw led and layer status led_t leds = host_keyboard_led_state(); if(leds.num_lock) { st7565_write("Num ", false); } if(leds.caps_lock) { st7565_write("Cap ", false); } if(leds.scroll_lock) { st7565_write("Scrl ", false); } if(leds.compose) { st7565_write("Com ", false); } if(leds.kana) { st7565_write("Kana", false); } st7565_advance_page(true); char layer_buffer[16 + 5]; // 3 spaces and one null terminator st7565_set_cursor(0, 1); format_layer_bitmap_string(layer_buffer, 0); st7565_write_ln(layer_buffer, false); format_layer_bitmap_string(layer_buffer, 16); st7565_write_ln(layer_buffer, false); st7565_write_ln(" 1=On D=Default", false); } else { // Draw logo static const char qmk_logo[] = { 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, 0x90, 0x91, 0x92, 0x93, 0x94, 0xA0, 0xA1, 0xA2, 0xA3, 0xA4, 0xA5, 0xA6, 0xA7, 0xA8, 0xA9, 0xAA, 0xAB, 0xAC, 0xAD, 0xAE, 0xAF, 0xB0, 0xB1, 0xB2, 0xB3, 0xB4, 0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7, 0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF, 0xD0, 0xD1, 0xD2, 0xD3, 0xD4, 0x00 }; st7565_write(qmk_logo, false); st7565_write(" Infinity Ergodox ", false); } } #endif #if defined(SPLIT_KEYBOARD) void usart_master_init(SerialDriver **driver) { PORTA->PCR[1] = PORTx_PCRn_PE | PORTx_PCRn_PS | PORTx_PCRn_PFE | PORTx_PCRn_MUX(2); PORTA->PCR[2] = PORTx_PCRn_DSE | PORTx_PCRn_SRE | PORTx_PCRn_MUX(2); // driver is set to SD1 in config.h } void usart_slave_init(SerialDriver **driver) { PORTE->PCR[0] = PORTx_PCRn_PE | PORTx_PCRn_PS | PORTx_PCRn_PFE | PORTx_PCRn_MUX(3); PORTE->PCR[1] = PORTx_PCRn_DSE | PORTx_PCRn_SRE | PORTx_PCRn_MUX(3); *driver = &SD2; } #endif