/* Copyright 2012 Jun Wako <wakojun@gmail.com> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * scan matrix */ #include <stdint.h> #include <stdbool.h> #include <string.h> #include <avr/io.h> #include <avr/wdt.h> #include <avr/interrupt.h> #include <util/delay.h> #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "split_util.h" #include "quantum.h" #ifdef USE_MATRIX_I2C # include "i2c.h" #else // USE_SERIAL # include "split_scomm.h" #endif #ifndef DEBOUNCE # define DEBOUNCE 5 #endif #define ERROR_DISCONNECT_COUNT 5 static uint8_t debouncing = DEBOUNCE; static const int ROWS_PER_HAND = MATRIX_ROWS/2; static uint8_t error_count = 0; uint8_t is_master = 0 ; static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix_debouncing[MATRIX_ROWS]; static matrix_row_t read_cols(void); static void init_cols(void); static void unselect_rows(void); static void select_row(uint8_t row); static uint8_t matrix_master_scan(void); __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void tx_rx_leds_init(void) { #ifndef NO_DEBUG_LEDS setPinOutput(B0); setPinOutput(D5); writePinHigh(B0); writePinHigh(D5); #endif } void tx_led_on(void) { #ifndef NO_DEBUG_LEDS writePinLow(D5); #endif } void tx_led_off(void) { #ifndef NO_DEBUG_LEDS writePinHigh(D5); #endif } void rx_led_on(void) { #ifndef NO_DEBUG_LEDS writePinLow(B0); #endif } void rx_led_off(void) { #ifndef NO_DEBUG_LEDS writePinHigh(B0); #endif } void matrix_init(void) { split_keyboard_setup(); // initialize row and col unselect_rows(); init_cols(); tx_rx_leds_init(); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; matrix_debouncing[i] = 0; } is_master = has_usb(); matrix_init_quantum(); } uint8_t _matrix_scan(void) { bool changed = false; // Right hand is stored after the left in the matirx so, we need to offset it int offset = isLeftHand ? 0 : (ROWS_PER_HAND); for (uint8_t i = 0; i < ROWS_PER_HAND; i++) { select_row(i); _delay_us(30); // without this wait read unstable value. matrix_row_t cols = read_cols(); if (matrix_debouncing[i+offset] != cols) { changed = true; matrix_debouncing[i+offset] = cols; debouncing = DEBOUNCE; } unselect_rows(); } if (debouncing) { if (--debouncing) { _delay_ms(1); } else { for (uint8_t i = 0; i < ROWS_PER_HAND; i++) { matrix[i+offset] = matrix_debouncing[i+offset]; } } } return changed; } #ifdef USE_MATRIX_I2C // Get rows from other half over i2c int i2c_transaction(void) { int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE); if (err) goto i2c_error; // start of matrix stored at 0x00 err = i2c_master_write(0x00); if (err) goto i2c_error; // Start read err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ); if (err) goto i2c_error; if (!err) { int i; for (i = 0; i < ROWS_PER_HAND-1; ++i) { matrix[slaveOffset+i] = i2c_master_read(I2C_ACK); } matrix[slaveOffset+i] = i2c_master_read(I2C_NACK); i2c_master_stop(); } else { i2c_error: // the cable is disconnceted, or something else went wrong i2c_reset_state(); return err; } return 0; } #else // USE_SERIAL int serial_transaction(int master_changed) { int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; #ifdef SERIAL_USE_MULTI_TRANSACTION int ret=serial_update_buffers(master_changed); #else int ret=serial_update_buffers(); #endif if (ret ) { if(ret==2) rx_led_on(); return 1; } rx_led_off(); memcpy(&matrix[slaveOffset], (void *)serial_slave_buffer, SERIAL_SLAVE_BUFFER_LENGTH); return 0; } #endif uint8_t matrix_scan(void) { bool changed = false; if (is_master) { changed |= matrix_master_scan(); }else{ changed |= matrix_slave_scan(); int offset = (isLeftHand) ? ROWS_PER_HAND : 0; memcpy(&matrix[offset], (void *)serial_master_buffer, SERIAL_MASTER_BUFFER_LENGTH); matrix_scan_quantum(); } return (uint8_t) changed; } uint8_t matrix_master_scan(void) { int ret = _matrix_scan(); int mchanged = 1; int offset = (isLeftHand) ? 0 : ROWS_PER_HAND; #ifdef USE_MATRIX_I2C // for (int i = 0; i < ROWS_PER_HAND; ++i) { /* i2c_slave_buffer[i] = matrix[offset+i]; */ // i2c_slave_buffer[i] = matrix[offset+i]; // } #else // USE_SERIAL #ifdef SERIAL_USE_MULTI_TRANSACTION mchanged = memcmp((void *)serial_master_buffer, &matrix[offset], SERIAL_MASTER_BUFFER_LENGTH); #endif memcpy((void *)serial_master_buffer, &matrix[offset], SERIAL_MASTER_BUFFER_LENGTH); #endif #ifdef USE_MATRIX_I2C if( i2c_transaction() ) { #else // USE_SERIAL if( serial_transaction(mchanged) ) { #endif // turn on the indicator led when halves are disconnected tx_led_on(); error_count++; if (error_count > ERROR_DISCONNECT_COUNT) { // reset other half if disconnected int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; for (int i = 0; i < ROWS_PER_HAND; ++i) { matrix[slaveOffset+i] = 0; } } } else { // turn off the indicator led on no error tx_led_off(); error_count = 0; } matrix_scan_quantum(); return ret; } uint8_t matrix_slave_scan(void) { int ret = _matrix_scan(); int offset = (isLeftHand) ? 0 : ROWS_PER_HAND; #ifdef USE_MATRIX_I2C for (int i = 0; i < ROWS_PER_HAND; ++i) { /* i2c_slave_buffer[i] = matrix[offset+i]; */ i2c_slave_buffer[i] = matrix[offset+i]; } #else // USE_SERIAL #ifdef SERIAL_USE_MULTI_TRANSACTION int change = 0; #endif for (int i = 0; i < ROWS_PER_HAND; ++i) { #ifdef SERIAL_USE_MULTI_TRANSACTION if( serial_slave_buffer[i] != matrix[offset+i] ) change = 1; #endif serial_slave_buffer[i] = matrix[offset+i]; } #ifdef SERIAL_USE_MULTI_TRANSACTION slave_buffer_change_count += change; #endif #endif return ret; } bool matrix_is_modified(void) { if (debouncing) return false; return true; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<<col)); } inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; } void matrix_print(void) { print("\nr/c 0123456789ABCDEF\n"); for (uint8_t row = 0; row < MATRIX_ROWS; row++) { phex(row); print(": "); pbin_reverse16(matrix_get_row(row)); print("\n"); } } uint8_t matrix_key_count(void) { uint8_t count = 0; for (uint8_t i = 0; i < MATRIX_ROWS; i++) { count += bitpop16(matrix[i]); } return count; } static void init_cols(void) { for(int x = 0; x < MATRIX_COLS; x++) { _SFR_IO8((col_pins[x] >> 4) + 1) &= ~_BV(col_pins[x] & 0xF); _SFR_IO8((col_pins[x] >> 4) + 2) |= _BV(col_pins[x] & 0xF); } } static matrix_row_t read_cols(void) { matrix_row_t result = 0; for(int x = 0; x < MATRIX_COLS; x++) { result |= (_SFR_IO8(col_pins[x] >> 4) & _BV(col_pins[x] & 0xF)) ? 0 : (1 << x); } return result; } static void unselect_rows(void) { for(int x = 0; x < ROWS_PER_HAND; x++) { _SFR_IO8((row_pins[x] >> 4) + 1) &= ~_BV(row_pins[x] & 0xF); _SFR_IO8((row_pins[x] >> 4) + 2) |= _BV(row_pins[x] & 0xF); } } static void select_row(uint8_t row) { _SFR_IO8((row_pins[row] >> 4) + 1) |= _BV(row_pins[row] & 0xF); _SFR_IO8((row_pins[row] >> 4) + 2) &= ~_BV(row_pins[row] & 0xF); }