/* Copyright 2017 Jason Williams * Copyright 2017 Jack Humbert * Copyright 2018 Yiancar * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "rgb_matrix.h" #include "progmem.h" #include "eeprom.h" #include "eeconfig.h" #include "keyboard.h" #include "sync_timer.h" #include "debug.h" #include #include #include #include #ifndef RGB_MATRIX_CENTER const led_point_t k_rgb_matrix_center = {112, 32}; #else const led_point_t k_rgb_matrix_center = RGB_MATRIX_CENTER; #endif __attribute__((weak)) rgb_t rgb_matrix_hsv_to_rgb(hsv_t hsv) { return hsv_to_rgb(hsv); } // Generic effect runners #include "rgb_matrix_runners.inc" // ------------------------------------------ // -----Begin rgb effect includes macros----- #define RGB_MATRIX_EFFECT(name) #define RGB_MATRIX_CUSTOM_EFFECT_IMPLS #include "rgb_matrix_effects.inc" #ifdef RGB_MATRIX_CUSTOM_KB # include "rgb_matrix_kb.inc" #endif #ifdef RGB_MATRIX_CUSTOM_USER # include "rgb_matrix_user.inc" #endif #undef RGB_MATRIX_CUSTOM_EFFECT_IMPLS #undef RGB_MATRIX_EFFECT // -----End rgb effect includes macros------- // ------------------------------------------ // globals rgb_config_t rgb_matrix_config; // TODO: would like to prefix this with g_ for global consistancy, do this in another pr uint32_t g_rgb_timer; #ifdef RGB_MATRIX_FRAMEBUFFER_EFFECTS uint8_t g_rgb_frame_buffer[MATRIX_ROWS][MATRIX_COLS] = {{0}}; #endif // RGB_MATRIX_FRAMEBUFFER_EFFECTS #ifdef RGB_MATRIX_KEYREACTIVE_ENABLED last_hit_t g_last_hit_tracker; #endif // RGB_MATRIX_KEYREACTIVE_ENABLED // internals static bool suspend_state = false; static uint8_t rgb_last_enable = UINT8_MAX; static uint8_t rgb_last_effect = UINT8_MAX; static effect_params_t rgb_effect_params = {0, LED_FLAG_ALL, false}; static rgb_task_states rgb_task_state = SYNCING; // double buffers static uint32_t rgb_timer_buffer; #ifdef RGB_MATRIX_KEYREACTIVE_ENABLED static last_hit_t last_hit_buffer; #endif // RGB_MATRIX_KEYREACTIVE_ENABLED // split rgb matrix #if defined(RGB_MATRIX_SPLIT) const uint8_t k_rgb_matrix_split[2] = RGB_MATRIX_SPLIT; #endif EECONFIG_DEBOUNCE_HELPER(rgb_matrix, EECONFIG_RGB_MATRIX, rgb_matrix_config); void eeconfig_update_rgb_matrix(void) { eeconfig_flush_rgb_matrix(true); } void eeconfig_update_rgb_matrix_default(void) { dprintf("eeconfig_update_rgb_matrix_default\n"); rgb_matrix_config.enable = RGB_MATRIX_DEFAULT_ON; rgb_matrix_config.mode = RGB_MATRIX_DEFAULT_MODE; rgb_matrix_config.hsv = (hsv_t){RGB_MATRIX_DEFAULT_HUE, RGB_MATRIX_DEFAULT_SAT, RGB_MATRIX_DEFAULT_VAL}; rgb_matrix_config.speed = RGB_MATRIX_DEFAULT_SPD; rgb_matrix_config.flags = RGB_MATRIX_DEFAULT_FLAGS; eeconfig_flush_rgb_matrix(true); } void eeconfig_debug_rgb_matrix(void) { dprintf("rgb_matrix_config EEPROM\n"); dprintf("rgb_matrix_config.enable = %d\n", rgb_matrix_config.enable); dprintf("rgb_matrix_config.mode = %d\n", rgb_matrix_config.mode); dprintf("rgb_matrix_config.hsv.h = %d\n", rgb_matrix_config.hsv.h); dprintf("rgb_matrix_config.hsv.s = %d\n", rgb_matrix_config.hsv.s); dprintf("rgb_matrix_config.hsv.v = %d\n", rgb_matrix_config.hsv.v); dprintf("rgb_matrix_config.speed = %d\n", rgb_matrix_config.speed); dprintf("rgb_matrix_config.flags = %d\n", rgb_matrix_config.flags); } void rgb_matrix_reload_from_eeprom(void) { rgb_matrix_disable_noeeprom(); /* Reset back to what we have in eeprom */ eeconfig_init_rgb_matrix(); eeconfig_debug_rgb_matrix(); // display current eeprom values if (rgb_matrix_config.enable) { rgb_matrix_mode_noeeprom(rgb_matrix_config.mode); } } __attribute__((weak)) uint8_t rgb_matrix_map_row_column_to_led_kb(uint8_t row, uint8_t column, uint8_t *led_i) { return 0; } uint8_t rgb_matrix_map_row_column_to_led(uint8_t row, uint8_t column, uint8_t *led_i) { uint8_t led_count = rgb_matrix_map_row_column_to_led_kb(row, column, led_i); uint8_t led_index = g_led_config.matrix_co[row][column]; if (led_index != NO_LED) { led_i[led_count] = led_index; led_count++; } return led_count; } void rgb_matrix_update_pwm_buffers(void) { rgb_matrix_driver.flush(); } __attribute__((weak)) int rgb_matrix_led_index(int index) { #if defined(RGB_MATRIX_SPLIT) if (!is_keyboard_left() && index >= k_rgb_matrix_split[0]) { return index - k_rgb_matrix_split[0]; } #endif return index; } void rgb_matrix_set_color(int index, uint8_t red, uint8_t green, uint8_t blue) { rgb_matrix_driver.set_color(rgb_matrix_led_index(index), red, green, blue); } void rgb_matrix_set_color_all(uint8_t red, uint8_t green, uint8_t blue) { #if defined(RGB_MATRIX_SPLIT) for (uint8_t i = 0; i < RGB_MATRIX_LED_COUNT; i++) rgb_matrix_set_color(i, red, green, blue); #else rgb_matrix_driver.set_color_all(red, green, blue); #endif } void rgb_matrix_handle_key_event(uint8_t row, uint8_t col, bool pressed) { #ifndef RGB_MATRIX_SPLIT if (!is_keyboard_master()) return; #endif #ifdef RGB_MATRIX_KEYREACTIVE_ENABLED uint8_t led[LED_HITS_TO_REMEMBER]; uint8_t led_count = 0; # if defined(RGB_MATRIX_KEYRELEASES) if (!pressed) # elif defined(RGB_MATRIX_KEYPRESSES) if (pressed) # endif // defined(RGB_MATRIX_KEYRELEASES) { led_count = rgb_matrix_map_row_column_to_led(row, col, led); } if (last_hit_buffer.count + led_count > LED_HITS_TO_REMEMBER) { memcpy(&last_hit_buffer.x[0], &last_hit_buffer.x[led_count], LED_HITS_TO_REMEMBER - led_count); memcpy(&last_hit_buffer.y[0], &last_hit_buffer.y[led_count], LED_HITS_TO_REMEMBER - led_count); memcpy(&last_hit_buffer.tick[0], &last_hit_buffer.tick[led_count], (LED_HITS_TO_REMEMBER - led_count) * 2); // 16 bit memcpy(&last_hit_buffer.index[0], &last_hit_buffer.index[led_count], LED_HITS_TO_REMEMBER - led_count); last_hit_buffer.count = LED_HITS_TO_REMEMBER - led_count; } for (uint8_t i = 0; i < led_count; i++) { uint8_t index = last_hit_buffer.count; last_hit_buffer.x[index] = g_led_config.point[led[i]].x; last_hit_buffer.y[index] = g_led_config.point[led[i]].y; last_hit_buffer.index[index] = led[i]; last_hit_buffer.tick[index] = 0; last_hit_buffer.count++; } #endif // RGB_MATRIX_KEYREACTIVE_ENABLED #if defined(RGB_MATRIX_FRAMEBUFFER_EFFECTS) && defined(ENABLE_RGB_MATRIX_TYPING_HEATMAP) # if defined(RGB_MATRIX_KEYRELEASES) if (!pressed) # else if (pressed) # endif // defined(RGB_MATRIX_KEYRELEASES) { if (rgb_matrix_config.mode == RGB_MATRIX_TYPING_HEATMAP) { process_rgb_matrix_typing_heatmap(row, col); } } #endif // defined(RGB_MATRIX_FRAMEBUFFER_EFFECTS) && defined(ENABLE_RGB_MATRIX_TYPING_HEATMAP) } void rgb_matrix_test(void) { // Mask out bits 4 and 5 // Increase the factor to make the test animation slower (and reduce to make it faster) uint8_t factor = 10; switch ((g_rgb_timer & (0b11 << factor)) >> factor) { case 0: { rgb_matrix_set_color_all(20, 0, 0); break; } case 1: { rgb_matrix_set_color_all(0, 20, 0); break; } case 2: { rgb_matrix_set_color_all(0, 0, 20); break; } case 3: { rgb_matrix_set_color_all(20, 20, 20); break; } } } static bool rgb_matrix_none(effect_params_t *params) { if (!params->init) { return false; } rgb_matrix_set_color_all(0, 0, 0); return false; } static void rgb_task_timers(void) { #if defined(RGB_MATRIX_KEYREACTIVE_ENABLED) uint32_t deltaTime = sync_timer_elapsed32(rgb_timer_buffer); #endif // defined(RGB_MATRIX_KEYREACTIVE_ENABLED) rgb_timer_buffer = sync_timer_read32(); // Update double buffer last hit timers #ifdef RGB_MATRIX_KEYREACTIVE_ENABLED uint8_t count = last_hit_buffer.count; for (uint8_t i = 0; i < count; ++i) { if (UINT16_MAX - deltaTime < last_hit_buffer.tick[i]) { last_hit_buffer.count--; continue; } last_hit_buffer.tick[i] += deltaTime; } #endif // RGB_MATRIX_KEYREACTIVE_ENABLED } static void rgb_task_sync(void) { eeconfig_flush_rgb_matrix(false); // next task if (sync_timer_elapsed32(g_rgb_timer) >= RGB_MATRIX_LED_FLUSH_LIMIT) rgb_task_state = STARTING; } static void rgb_task_start(void) { // reset iter rgb_effect_params.iter = 0; // update double buffers g_rgb_timer = rgb_timer_buffer; #ifdef RGB_MATRIX_KEYREACTIVE_ENABLED g_last_hit_tracker = last_hit_buffer; #endif // RGB_MATRIX_KEYREACTIVE_ENABLED // next task rgb_task_state = RENDERING; } static void rgb_task_render(uint8_t effect) { bool rendering = false; rgb_effect_params.init = (effect != rgb_last_effect) || (rgb_matrix_config.enable != rgb_last_enable); if (rgb_effect_params.flags != rgb_matrix_config.flags) { rgb_effect_params.flags = rgb_matrix_config.flags; rgb_matrix_set_color_all(0, 0, 0); } // each effect can opt to do calculations // and/or request PWM buffer updates. switch (effect) { case RGB_MATRIX_NONE: rendering = rgb_matrix_none(&rgb_effect_params); break; // --------------------------------------------- // -----Begin rgb effect switch case macros----- #define RGB_MATRIX_EFFECT(name, ...) \ case RGB_MATRIX_##name: \ rendering = name(&rgb_effect_params); \ break; #include "rgb_matrix_effects.inc" #undef RGB_MATRIX_EFFECT #if defined(RGB_MATRIX_CUSTOM_KB) || defined(RGB_MATRIX_CUSTOM_USER) # define RGB_MATRIX_EFFECT(name, ...) \ case RGB_MATRIX_CUSTOM_##name: \ rendering = name(&rgb_effect_params); \ break; # ifdef RGB_MATRIX_CUSTOM_KB # include "rgb_matrix_kb.inc" # endif # ifdef RGB_MATRIX_CUSTOM_USER # include "rgb_matrix_user.inc" # endif # undef RGB_MATRIX_EFFECT #endif // -----End rgb effect switch case macros------- // --------------------------------------------- // Factory default magic value case UINT8_MAX: { rgb_matrix_test(); rgb_task_state = FLUSHING; } return; } rgb_effect_params.iter++; // next task if (!rendering) { rgb_task_state = FLUSHING; if (!rgb_effect_params.init && effect == RGB_MATRIX_NONE) { // We only need to flush once if we are RGB_MATRIX_NONE rgb_task_state = SYNCING; } } } static void rgb_task_flush(uint8_t effect) { // update last trackers after the first full render so we can init over several frames rgb_last_effect = effect; rgb_last_enable = rgb_matrix_config.enable; // update pwm buffers rgb_matrix_update_pwm_buffers(); // next task rgb_task_state = SYNCING; } void rgb_matrix_task(void) { rgb_task_timers(); // Ideally we would also stop sending zeros to the LED driver PWM buffers // while suspended and just do a software shutdown. This is a cheap hack for now. bool suspend_backlight = suspend_state || #if RGB_MATRIX_TIMEOUT > 0 (last_input_activity_elapsed() > (uint32_t)RGB_MATRIX_TIMEOUT) || #endif // RGB_MATRIX_TIMEOUT > 0 false; uint8_t effect = suspend_backlight || !rgb_matrix_config.enable ? 0 : rgb_matrix_config.mode; switch (rgb_task_state) { case STARTING: rgb_task_start(); break; case RENDERING: rgb_task_render(effect); if (effect) { if (rgb_task_state == FLUSHING) { // ensure we only draw basic indicators once rendering is finished rgb_matrix_indicators(); } rgb_matrix_indicators_advanced(&rgb_effect_params); } break; case FLUSHING: rgb_task_flush(effect); break; case SYNCING: rgb_task_sync(); break; } } void rgb_matrix_indicators(void) { rgb_matrix_indicators_kb(); } __attribute__((weak)) bool rgb_matrix_indicators_kb(void) { return rgb_matrix_indicators_user(); } __attribute__((weak)) bool rgb_matrix_indicators_user(void) { return true; } struct rgb_matrix_limits_t rgb_matrix_get_limits(uint8_t iter) { struct rgb_matrix_limits_t limits = {0}; #if defined(RGB_MATRIX_LED_PROCESS_LIMIT) && RGB_MATRIX_LED_PROCESS_LIMIT > 0 && RGB_MATRIX_LED_PROCESS_LIMIT < RGB_MATRIX_LED_COUNT # if defined(RGB_MATRIX_SPLIT) limits.led_min_index = RGB_MATRIX_LED_PROCESS_LIMIT * (iter); limits.led_max_index = limits.led_min_index + RGB_MATRIX_LED_PROCESS_LIMIT; if (limits.led_max_index > RGB_MATRIX_LED_COUNT) limits.led_max_index = RGB_MATRIX_LED_COUNT; if (is_keyboard_left() && (limits.led_max_index > k_rgb_matrix_split[0])) limits.led_max_index = k_rgb_matrix_split[0]; if (!(is_keyboard_left()) && (limits.led_min_index < k_rgb_matrix_split[0])) limits.led_min_index = k_rgb_matrix_split[0]; # else limits.led_min_index = RGB_MATRIX_LED_PROCESS_LIMIT * (iter); limits.led_max_index = limits.led_min_index + RGB_MATRIX_LED_PROCESS_LIMIT; if (limits.led_max_index > RGB_MATRIX_LED_COUNT) limits.led_max_index = RGB_MATRIX_LED_COUNT; # endif #else # if defined(RGB_MATRIX_SPLIT) limits.led_min_index = 0; limits.led_max_index = RGB_MATRIX_LED_COUNT; if (is_keyboard_left() && (limits.led_max_index > k_rgb_matrix_split[0])) limits.led_max_index = k_rgb_matrix_split[0]; if (!(is_keyboard_left()) && (limits.led_min_index < k_rgb_matrix_split[0])) limits.led_min_index = k_rgb_matrix_split[0]; # else limits.led_min_index = 0; limits.led_max_index = RGB_MATRIX_LED_COUNT; # endif #endif return limits; } void rgb_matrix_indicators_advanced(effect_params_t *params) { /* special handling is needed for "params->iter", since it's already been incremented. * Could move the invocations to rgb_task_render, but then it's missing a few checks * and not sure which would be better. Otherwise, this should be called from * rgb_task_render, right before the iter++ line. */ RGB_MATRIX_USE_LIMITS_ITER(min, max, params->iter - 1); rgb_matrix_indicators_advanced_kb(min, max); } __attribute__((weak)) bool rgb_matrix_indicators_advanced_kb(uint8_t led_min, uint8_t led_max) { return rgb_matrix_indicators_advanced_user(led_min, led_max); } __attribute__((weak)) bool rgb_matrix_indicators_advanced_user(uint8_t led_min, uint8_t led_max) { return true; } void rgb_matrix_init(void) { rgb_matrix_driver.init(); #ifdef RGB_MATRIX_KEYREACTIVE_ENABLED g_last_hit_tracker.count = 0; for (uint8_t i = 0; i < LED_HITS_TO_REMEMBER; ++i) { g_last_hit_tracker.tick[i] = UINT16_MAX; } last_hit_buffer.count = 0; for (uint8_t i = 0; i < LED_HITS_TO_REMEMBER; ++i) { last_hit_buffer.tick[i] = UINT16_MAX; } #endif // RGB_MATRIX_KEYREACTIVE_ENABLED eeconfig_init_rgb_matrix(); if (!rgb_matrix_config.mode) { dprintf("rgb_matrix_init_drivers rgb_matrix_config.mode = 0. Write default values to EEPROM.\n"); eeconfig_update_rgb_matrix_default(); } eeconfig_debug_rgb_matrix(); // display current eeprom values } void rgb_matrix_set_suspend_state(bool state) { #ifdef RGB_MATRIX_SLEEP if (state && !suspend_state) { // only run if turning off, and only once rgb_task_render(0); // turn off all LEDs when suspending rgb_task_flush(0); // and actually flash led state to LEDs } suspend_state = state; #endif } bool rgb_matrix_get_suspend_state(void) { return suspend_state; } void rgb_matrix_toggle_eeprom_helper(bool write_to_eeprom) { rgb_matrix_config.enable ^= 1; rgb_task_state = STARTING; eeconfig_flag_rgb_matrix(write_to_eeprom); dprintf("rgb matrix toggle [%s]: rgb_matrix_config.enable = %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", rgb_matrix_config.enable); } void rgb_matrix_toggle_noeeprom(void) { rgb_matrix_toggle_eeprom_helper(false); } void rgb_matrix_toggle(void) { rgb_matrix_toggle_eeprom_helper(true); } void rgb_matrix_enable(void) { rgb_matrix_enable_noeeprom(); eeconfig_flag_rgb_matrix(true); } void rgb_matrix_enable_noeeprom(void) { if (!rgb_matrix_config.enable) rgb_task_state = STARTING; rgb_matrix_config.enable = 1; } void rgb_matrix_disable(void) { rgb_matrix_disable_noeeprom(); eeconfig_flag_rgb_matrix(true); } void rgb_matrix_disable_noeeprom(void) { if (rgb_matrix_config.enable) rgb_task_state = STARTING; rgb_matrix_config.enable = 0; } uint8_t rgb_matrix_is_enabled(void) { return rgb_matrix_config.enable; } void rgb_matrix_mode_eeprom_helper(uint8_t mode, bool write_to_eeprom) { if (!rgb_matrix_config.enable) { return; } if (mode < 1) { rgb_matrix_config.mode = 1; } else if (mode >= RGB_MATRIX_EFFECT_MAX) { rgb_matrix_config.mode = RGB_MATRIX_EFFECT_MAX - 1; } else { rgb_matrix_config.mode = mode; } rgb_task_state = STARTING; eeconfig_flag_rgb_matrix(write_to_eeprom); dprintf("rgb matrix mode [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", rgb_matrix_config.mode); } void rgb_matrix_mode_noeeprom(uint8_t mode) { rgb_matrix_mode_eeprom_helper(mode, false); } void rgb_matrix_mode(uint8_t mode) { rgb_matrix_mode_eeprom_helper(mode, true); } uint8_t rgb_matrix_get_mode(void) { return rgb_matrix_config.mode; } void rgb_matrix_step_helper(bool write_to_eeprom) { uint8_t mode = rgb_matrix_config.mode + 1; rgb_matrix_mode_eeprom_helper((mode < RGB_MATRIX_EFFECT_MAX) ? mode : 1, write_to_eeprom); } void rgb_matrix_step_noeeprom(void) { rgb_matrix_step_helper(false); } void rgb_matrix_step(void) { rgb_matrix_step_helper(true); } void rgb_matrix_step_reverse_helper(bool write_to_eeprom) { uint8_t mode = rgb_matrix_config.mode - 1; rgb_matrix_mode_eeprom_helper((mode < 1) ? RGB_MATRIX_EFFECT_MAX - 1 : mode, write_to_eeprom); } void rgb_matrix_step_reverse_noeeprom(void) { rgb_matrix_step_reverse_helper(false); } void rgb_matrix_step_reverse(void) { rgb_matrix_step_reverse_helper(true); } void rgb_matrix_sethsv_eeprom_helper(uint16_t hue, uint8_t sat, uint8_t val, bool write_to_eeprom) { if (!rgb_matrix_config.enable) { return; } rgb_matrix_config.hsv.h = hue; rgb_matrix_config.hsv.s = sat; rgb_matrix_config.hsv.v = (val > RGB_MATRIX_MAXIMUM_BRIGHTNESS) ? RGB_MATRIX_MAXIMUM_BRIGHTNESS : val; eeconfig_flag_rgb_matrix(write_to_eeprom); dprintf("rgb matrix set hsv [%s]: %u,%u,%u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", rgb_matrix_config.hsv.h, rgb_matrix_config.hsv.s, rgb_matrix_config.hsv.v); } void rgb_matrix_sethsv_noeeprom(uint16_t hue, uint8_t sat, uint8_t val) { rgb_matrix_sethsv_eeprom_helper(hue, sat, val, false); } void rgb_matrix_sethsv(uint16_t hue, uint8_t sat, uint8_t val) { rgb_matrix_sethsv_eeprom_helper(hue, sat, val, true); } hsv_t rgb_matrix_get_hsv(void) { return rgb_matrix_config.hsv; } uint8_t rgb_matrix_get_hue(void) { return rgb_matrix_config.hsv.h; } uint8_t rgb_matrix_get_sat(void) { return rgb_matrix_config.hsv.s; } uint8_t rgb_matrix_get_val(void) { return rgb_matrix_config.hsv.v; } void rgb_matrix_increase_hue_helper(bool write_to_eeprom) { rgb_matrix_sethsv_eeprom_helper(rgb_matrix_config.hsv.h + RGB_MATRIX_HUE_STEP, rgb_matrix_config.hsv.s, rgb_matrix_config.hsv.v, write_to_eeprom); } void rgb_matrix_increase_hue_noeeprom(void) { rgb_matrix_increase_hue_helper(false); } void rgb_matrix_increase_hue(void) { rgb_matrix_increase_hue_helper(true); } void rgb_matrix_decrease_hue_helper(bool write_to_eeprom) { rgb_matrix_sethsv_eeprom_helper(rgb_matrix_config.hsv.h - RGB_MATRIX_HUE_STEP, rgb_matrix_config.hsv.s, rgb_matrix_config.hsv.v, write_to_eeprom); } void rgb_matrix_decrease_hue_noeeprom(void) { rgb_matrix_decrease_hue_helper(false); } void rgb_matrix_decrease_hue(void) { rgb_matrix_decrease_hue_helper(true); } void rgb_matrix_increase_sat_helper(bool write_to_eeprom) { rgb_matrix_sethsv_eeprom_helper(rgb_matrix_config.hsv.h, qadd8(rgb_matrix_config.hsv.s, RGB_MATRIX_SAT_STEP), rgb_matrix_config.hsv.v, write_to_eeprom); } void rgb_matrix_increase_sat_noeeprom(void) { rgb_matrix_increase_sat_helper(false); } void rgb_matrix_increase_sat(void) { rgb_matrix_increase_sat_helper(true); } void rgb_matrix_decrease_sat_helper(bool write_to_eeprom) { rgb_matrix_sethsv_eeprom_helper(rgb_matrix_config.hsv.h, qsub8(rgb_matrix_config.hsv.s, RGB_MATRIX_SAT_STEP), rgb_matrix_config.hsv.v, write_to_eeprom); } void rgb_matrix_decrease_sat_noeeprom(void) { rgb_matrix_decrease_sat_helper(false); } void rgb_matrix_decrease_sat(void) { rgb_matrix_decrease_sat_helper(true); } void rgb_matrix_increase_val_helper(bool write_to_eeprom) { rgb_matrix_sethsv_eeprom_helper(rgb_matrix_config.hsv.h, rgb_matrix_config.hsv.s, qadd8(rgb_matrix_config.hsv.v, RGB_MATRIX_VAL_STEP), write_to_eeprom); } void rgb_matrix_increase_val_noeeprom(void) { rgb_matrix_increase_val_helper(false); } void rgb_matrix_increase_val(void) { rgb_matrix_increase_val_helper(true); } void rgb_matrix_decrease_val_helper(bool write_to_eeprom) { rgb_matrix_sethsv_eeprom_helper(rgb_matrix_config.hsv.h, rgb_matrix_config.hsv.s, qsub8(rgb_matrix_config.hsv.v, RGB_MATRIX_VAL_STEP), write_to_eeprom); } void rgb_matrix_decrease_val_noeeprom(void) { rgb_matrix_decrease_val_helper(false); } void rgb_matrix_decrease_val(void) { rgb_matrix_decrease_val_helper(true); } void rgb_matrix_set_speed_eeprom_helper(uint8_t speed, bool write_to_eeprom) { rgb_matrix_config.speed = speed; eeconfig_flag_rgb_matrix(write_to_eeprom); dprintf("rgb matrix set speed [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", rgb_matrix_config.speed); } void rgb_matrix_set_speed_noeeprom(uint8_t speed) { rgb_matrix_set_speed_eeprom_helper(speed, false); } void rgb_matrix_set_speed(uint8_t speed) { rgb_matrix_set_speed_eeprom_helper(speed, true); } uint8_t rgb_matrix_get_speed(void) { return rgb_matrix_config.speed; } void rgb_matrix_increase_speed_helper(bool write_to_eeprom) { rgb_matrix_set_speed_eeprom_helper(qadd8(rgb_matrix_config.speed, RGB_MATRIX_SPD_STEP), write_to_eeprom); } void rgb_matrix_increase_speed_noeeprom(void) { rgb_matrix_increase_speed_helper(false); } void rgb_matrix_increase_speed(void) { rgb_matrix_increase_speed_helper(true); } void rgb_matrix_decrease_speed_helper(bool write_to_eeprom) { rgb_matrix_set_speed_eeprom_helper(qsub8(rgb_matrix_config.speed, RGB_MATRIX_SPD_STEP), write_to_eeprom); } void rgb_matrix_decrease_speed_noeeprom(void) { rgb_matrix_decrease_speed_helper(false); } void rgb_matrix_decrease_speed(void) { rgb_matrix_decrease_speed_helper(true); } void rgb_matrix_set_flags_eeprom_helper(led_flags_t flags, bool write_to_eeprom) { rgb_matrix_config.flags = flags; eeconfig_flag_rgb_matrix(write_to_eeprom); dprintf("rgb matrix set flags [%s]: %u\n", (write_to_eeprom) ? "EEPROM" : "NOEEPROM", rgb_matrix_config.flags); } led_flags_t rgb_matrix_get_flags(void) { return rgb_matrix_config.flags; } void rgb_matrix_set_flags(led_flags_t flags) { rgb_matrix_set_flags_eeprom_helper(flags, true); } void rgb_matrix_set_flags_noeeprom(led_flags_t flags) { rgb_matrix_set_flags_eeprom_helper(flags, false); }