/* Copyright 2012 Jun Wako Copyright 2014 Jack Humbert This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #if defined(__AVR__) #include #include #include #include #endif #include "wait.h" #include "print.h" #include "debug.h" #include "gpio.h" #include "util.h" #include "matrix.h" #include "timer.h" #include "i2c_master.h" #define SLAVE_I2C_ADDRESS_RIGHT 0x32 #define SLAVE_I2C_ADDRESS_NUMPAD 0x36 #define SLAVE_I2C_ADDRESS_ARROW 0x40 #define ERROR_DISCONNECT_COUNT 5 /* Set 0 if debouncing isn't needed */ #ifndef DEBOUNCE # define DEBOUNCE 5 #endif #if (DEBOUNCE > 0) static uint16_t debouncing_time; static bool debouncing = false; #endif #if (MATRIX_COLS <= 8) # define print_matrix_header() print("\nr/c 01234567\n") # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) # define ROW_SHIFTER ((uint8_t)1) #elif (MATRIX_COLS <= 16) # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row)) # define ROW_SHIFTER ((uint16_t)1) #elif (MATRIX_COLS <= 32) # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row)) # define ROW_SHIFTER ((uint32_t)1) #endif #ifdef MATRIX_MASKED extern const matrix_row_t matrix_mask[]; #endif #if (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW) static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; #endif /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix_debouncing[MATRIX_ROWS]; #if (DIODE_DIRECTION == COL2ROW) static void init_cols(void); static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row); static void unselect_rows(void); static void select_row(uint8_t row); static void unselect_row(uint8_t row); #elif (DIODE_DIRECTION == ROW2COL) static void init_rows(void); static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col); static void unselect_cols(void); static void unselect_col(uint8_t col); static void select_col(uint8_t col); #endif __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } i2c_status_t i2c_transaction(uint8_t address, uint32_t mask, uint8_t col_offset); //this replases tmk code void matrix_setup(void){ i2c_init(); } void matrix_init(void) { // initialize row and col #if (DIODE_DIRECTION == COL2ROW) unselect_rows(); init_cols(); #elif (DIODE_DIRECTION == ROW2COL) unselect_cols(); init_rows(); #endif // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; matrix_debouncing[i] = 0; } matrix_init_kb(); } uint8_t matrix_scan(void) { #if (DIODE_DIRECTION == COL2ROW) // Set row, read cols for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) { # if (DEBOUNCE > 0) bool matrix_changed = read_cols_on_row(matrix_debouncing, current_row); if (matrix_changed) { debouncing = true; debouncing_time = timer_read(); } # else read_cols_on_row(matrix, current_row); # endif } #elif (DIODE_DIRECTION == ROW2COL) // Set col, read rows for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) { # if (DEBOUNCE > 0) bool matrix_changed = read_rows_on_col(matrix_debouncing, current_col); if (matrix_changed) { debouncing = true; debouncing_time = timer_read(); } # else read_rows_on_col(matrix, current_col); # endif } #endif # if (DEBOUNCE > 0) if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCE)) { for (uint8_t i = 0; i < MATRIX_ROWS; i++) { matrix[i] = matrix_debouncing[i]; } debouncing = false; } # endif if (i2c_transaction(SLAVE_I2C_ADDRESS_RIGHT, 0x3F, 0)) { for (uint8_t i = 0; i < MATRIX_ROWS ; i++) { matrix[i] &= 0x3F; //mask bits to keep } } if (i2c_transaction(SLAVE_I2C_ADDRESS_ARROW, 0X3FFF, 8)) { for (uint8_t i = 0; i < MATRIX_ROWS ; i++) { matrix[i] &= 0x3FFF; //mask bits to keep } } if (i2c_transaction(SLAVE_I2C_ADDRESS_NUMPAD, 0x1FFFF, 11)) { for (uint8_t i = 0; i < MATRIX_ROWS ; i++) { matrix[i] &= 0x1FFFF; //mask bits to keep } } matrix_scan_kb(); return 1; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } } static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) { // Store last value of row prior to reading matrix_row_t last_row_value = current_matrix[current_row]; // Clear data in matrix row current_matrix[current_row] = 0; // Select row and wait for row selecton to stabilize select_row(current_row); wait_us(30); // For each col... for(uint8_t col_index = 0; col_index < MATRIX_COLS_SCANNED; col_index++) { // Select the col pin to read (active low) uint8_t pin = col_pins[col_index]; uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF)); // Populate the matrix row with the state of the col pin current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index); } // Unselect row unselect_row(current_row); return (last_row_value != current_matrix[current_row]); } static void select_row(uint8_t row) { uint8_t pin = row_pins[row]; _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW } static void unselect_row(uint8_t row) { uint8_t pin = row_pins[row]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } static void unselect_rows(void) { for(uint8_t x = 0; x < MATRIX_ROWS; x++) { uint8_t pin = row_pins[x]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } } #elif (DIODE_DIRECTION == ROW2COL) static void init_rows(void) { for(uint8_t x = 0; x < MATRIX_ROWS; x++) { uint8_t pin = row_pins[x]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } } static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) { bool matrix_changed = false; // Select col and wait for col selecton to stabilize select_col(current_col); wait_us(30); // For each row... for(uint8_t row_index = 0; row_index < MATRIX_ROWS; row_index++) { // Store last value of row prior to reading matrix_row_t last_row_value = current_matrix[row_index]; // Check row pin state if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0) { // Pin LO, set col bit current_matrix[row_index] |= (ROW_SHIFTER << current_col); } else { // Pin HI, clear col bit current_matrix[row_index] &= ~(ROW_SHIFTER << current_col); } // Determine if the matrix changed state if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) { matrix_changed = true; } } // Unselect col unselect_col(current_col); return matrix_changed; } static void select_col(uint8_t col) { uint8_t pin = col_pins[col]; _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW } static void unselect_col(uint8_t col) { uint8_t pin = col_pins[col]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } static void unselect_cols(void) { for(uint8_t x = 0; x < MATRIX_COLS_SCANNED; x++) { uint8_t pin = col_pins[x]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } } #endif // Complete rows from other modules over i2c i2c_status_t i2c_transaction(uint8_t address, uint32_t mask, uint8_t col_offset) { uint8_t data[MATRIX_ROWS + 1]; i2c_status_t status = i2c_read_register(address, 0x01, data, (MATRIX_ROWS + 1), 5); for (uint8_t i = 0; i < (MATRIX_ROWS) && status >= 0; i++) { //assemble slave matrix in main matrix matrix[i] &= mask; //mask bits to keep matrix[i] |= ((uint32_t)data[i+1] << (MATRIX_COLS_SCANNED + col_offset)); //add new bits at the end } return status; }