Add 328P to mcu_selection.mk (#6682)

This commit is contained in:
fauxpark 2019-09-08 01:24:19 +10:00 committed by Drashna Jaelre
parent 0d94730da0
commit 490a13a02e
4 changed files with 15 additions and 129 deletions

View File

@ -3,42 +3,6 @@ SRC = matrix.c \
# MCU name # MCU name
MCU = atmega328p MCU = atmega328p
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection # Bootloader selection
# Teensy halfkay # Teensy halfkay
@ -51,14 +15,6 @@ OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# This uses usbaspbootloader # This uses usbaspbootloader
BOOTLOADER = USBasp BOOTLOADER = USBasp
# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
# Flash program via avrdude, but default command is not suitable. # Flash program via avrdude, but default command is not suitable.
# You can use plaid:default:program # You can use plaid:default:program
PROGRAM_CMD = avrdude -c usbasp -p m328p -U flash:w:$(BUILD_DIR)/$(TARGET).hex PROGRAM_CMD = avrdude -c usbasp -p m328p -U flash:w:$(BUILD_DIR)/$(TARGET).hex
@ -87,7 +43,4 @@ AUDIO_ENABLE = no # Audio output on port C6
FAUXCLICKY_ENABLE = no # Use buzzer to emulate clicky switches FAUXCLICKY_ENABLE = no # Use buzzer to emulate clicky switches
HD44780_ENABLE = no # Enable support for HD44780 based LCDs (+400) HD44780_ENABLE = no # Enable support for HD44780 based LCDs (+400)
# unsupported features for now
NO_UART = yes
NO_SUSPEND_POWER_DOWN = yes
CUSTOM_MATRIX = yes CUSTOM_MATRIX = yes

View File

@ -1,42 +1,5 @@
# MCU name # MCU name
MCU = atmega328p MCU = atmega328p
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
BOOTLOADER = bootloadHID BOOTLOADER = bootloadHID
@ -69,5 +32,3 @@ BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no # Audio output on port C6 AUDIO_ENABLE = no # Audio output on port C6
FAUXCLICKY_ENABLE = no # Use buzzer to emulate clicky switches FAUXCLICKY_ENABLE = no # Use buzzer to emulate clicky switches
HD44780_ENABLE = no # Enable support for HD44780 based LCDs (+400) HD44780_ENABLE = no # Enable support for HD44780 based LCDs (+400)
NO_UART = yes
NO_SUSPEND_POWER_DOWN = yes

View File

@ -1,43 +1,5 @@
# MCU name # MCU name
MCU = atmega328p MCU = atmega328p
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection # Bootloader selection
# Teensy halfkay # Teensy halfkay
@ -91,10 +53,5 @@ AUDIO_ENABLE = no # Audio output on port C6
FAUXCLICKY_ENABLE = no # Use buzzer to emulate clicky switches FAUXCLICKY_ENABLE = no # Use buzzer to emulate clicky switches
HD44780_ENABLE = no # Enable support for HD44780 based LCDs (+400) HD44780_ENABLE = no # Enable support for HD44780 based LCDs (+400)
# unsupported features for now
NO_UART = yes
NO_SUSPEND_POWER_DOWN = yes
LAYOUTS = ortho_4x12 planck_mit LAYOUTS = ortho_4x12 planck_mit
LAYOUTS_HAS_RGB = no LAYOUTS_HAS_RGB = no

View File

@ -91,3 +91,18 @@ ifneq (,$(filter $(MCU),atmega32a))
# Programming options # Programming options
PROGRAM_CMD ?= ./util/atmega32a_program.py $(TARGET).hex PROGRAM_CMD ?= ./util/atmega32a_program.py $(TARGET).hex
endif endif
ifneq (,$(filter $(MCU),atmega328p))
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 16000000
# unsupported features for now
NO_UART ?= yes
NO_SUSPEND_POWER_DOWN ?= yes
endif