This commit is contained in:
Takeshi Nishio 2020-05-16 15:29:23 +09:00
commit 3da4bd3d4d
2138 changed files with 97466 additions and 47428 deletions

View File

@ -1,24 +0,0 @@
-I.
-I./drivers
-I./drivers/avr
-I./keyboards/ergodox_ez
-I./keyboards/ergodox_ez/keymaps/vim
-I./lib
-I./lib/lufa
-I./quantum
-I./quantum/api
-I./quantum/audio
-I./quantum/keymap_extras
-I./quantum/process_keycode
-I./quantum/serial_link
-I./quantum/template
-I./quantum/tools
-I./quantum/visualizer
-I./tmk_core
-I./tmk_core/common
-I./tmk_core/common/debug.h
-I./tmk_core/protocol
-I./tmk_core/protocol/lufa
-I./util
-DQMK_KEYBOARD=\"$(KEYBOARD)\" -DQMK_KEYMAP=\"$(KEYMAP)\"

View File

@ -19,7 +19,7 @@ jobs:
container: qmkfm/base_container
steps:
- uses: actions/checkout@v1
- uses: actions/checkout@v2
with:
submodules: recursive
- name: Install dependencies

2
.gitignore vendored
View File

@ -24,6 +24,7 @@ quantum/version.h
.idea/
CMakeLists.txt
cmake-build-debug
.clang_complete
doxygen/
.DS_Store
/util/wsl_downloaded
@ -47,7 +48,6 @@ doxygen/
*.iml
.browse.VC.db*
*.stackdump
util/Win_Check_Output.txt
# Let these ones be user specific, since we have so many different configurations
.vscode/c_cpp_properties.json
.vscode/launch.json

View File

@ -11,10 +11,15 @@
"files.associations": {
"*.h": "c",
"*.c": "c",
"*.inc": "c",
"*.cpp": "cpp",
"*.hpp": "cpp",
"xstddef": "c",
"type_traits": "c",
"utility": "c"
},
"[markdown]": {
"editor.trimAutoWhitespace": false,
"files.trimTrailingWhitespace": false
}
}

View File

@ -29,6 +29,9 @@ $(info QMK Firmware $(QMK_VERSION))
endif
endif
# avoid 'Entering|Leaving directory' messages
MAKEFLAGS += --no-print-directory
ON_ERROR := error_occurred=1
BREAK_ON_ERRORS = no

File diff suppressed because one or more lines are too long

55
bin/qmk
View File

@ -2,52 +2,61 @@
"""CLI wrapper for running QMK commands.
"""
import os
import subprocess
import sys
from importlib.util import find_spec
from time import strftime
from pathlib import Path
# Add the QMK python libs to our path
script_dir = os.path.dirname(os.path.realpath(__file__))
qmk_dir = os.path.abspath(os.path.join(script_dir, '..'))
python_lib_dir = os.path.abspath(os.path.join(qmk_dir, 'lib', 'python'))
sys.path.append(python_lib_dir)
script_dir = Path(os.path.realpath(__file__)).parent
qmk_dir = script_dir.parent
python_lib_dir = Path(qmk_dir / 'lib' / 'python').resolve()
sys.path.append(str(python_lib_dir))
# Make sure our modules have been setup
with open(os.path.join(qmk_dir, 'requirements.txt'), 'r') as fd:
def _check_modules(requirements):
""" Check if the modules in the given requirements.txt are available.
"""
with Path(qmk_dir / requirements).open() as fd:
for line in fd.readlines():
line = line.strip().replace('<', '=').replace('>', '=')
if line[0] == '#':
if len(line) == 0 or line[0] == '#' or line.startswith('-r'):
continue
if '#' in line:
line = line.split('#')[0]
module = line.split('=')[0] if '=' in line else line
module = dict()
module['name'] = module['import'] = line.split('=')[0] if '=' in line else line
if module in ['pep8-naming']:
# Not every module is importable by its own name.
continue
if module['name'] == "pep8-naming":
module['import'] = "pep8ext_naming"
if not find_spec(module):
print('Could not find module %s!' % module)
print('Please run `pip3 install -r requirements.txt` to install the python dependencies.')
if not find_spec(module['import']):
print('Could not find module %s!' % module['name'])
print('Please run `python3 -m pip install -r %s` to install required python dependencies.' % (qmk_dir / requirements,))
if developer:
print('You can also turn off developer mode: qmk config user.developer=None')
print()
exit(255)
# Figure out our version
# TODO(skullydazed/anyone): Find a method that doesn't involve git. This is slow in docker and on windows.
command = ['git', 'describe', '--abbrev=6', '--dirty', '--always', '--tags']
result = subprocess.run(command, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
if result.returncode == 0:
os.environ['QMK_VERSION'] = result.stdout.strip()
else:
os.environ['QMK_VERSION'] = 'nogit-' + strftime('%Y-%m-%d-%H:%M:%S') + '-dirty'
developer = False
# Make sure our modules have been setup
_check_modules('requirements.txt')
# Setup the CLI
import milc # noqa
# For developers additional modules are needed
if milc.cli.config.user.developer:
# Do not run the check for 'config',
# so users can turn off developer mode
if len(sys.argv) == 1 or (len(sys.argv) > 1 and 'config' != sys.argv[1]):
developer = True
_check_modules('requirements-dev.txt')
milc.EMOJI_LOGLEVELS['INFO'] = '{fg_blue}Ψ{style_reset_all}'

View File

@ -21,6 +21,11 @@ else ifneq ("$(wildcard $(MAIN_KEYMAP_PATH_1)/keymap.json)","")
KEYMAP_PATH := $(MAIN_KEYMAP_PATH_1)
endif
# Load the keymap-level rules.mk if exists
ifneq ("$(wildcard $(KEYMAP_PATH))", "")
-include $(KEYMAP_PATH)/rules.mk
endif
# Generate the keymap.c
$(KEYBOARD_OUTPUT)/src/keymap.c: $(KEYMAP_JSON)
bin/qmk json2c --quiet --output $(KEYMAP_C) $(KEYMAP_JSON)

View File

@ -231,44 +231,19 @@ endif
# We can assume a ChibiOS target When MCU_FAMILY is defined since it's
# not used for LUFA
ifdef MCU_FAMILY
FIRMWARE_FORMAT?=bin
PLATFORM=CHIBIOS
PLATFORM_KEY=chibios
FIRMWARE_FORMAT?=bin
else ifdef ARM_ATSAM
PLATFORM=ARM_ATSAM
PLATFORM_KEY=arm_atsam
FIRMWARE_FORMAT=bin
else
PLATFORM=AVR
PLATFORM_KEY=avr
FIRMWARE_FORMAT?=hex
endif
ifeq ($(PLATFORM),CHIBIOS)
include $(TMK_PATH)/chibios.mk
OPT_OS = chibios
ifneq ("$(wildcard $(KEYBOARD_PATH_5)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH_5)/bootloader_defs.h
else ifneq ("$(wildcard $(KEYBOARD_PATH_5)/boards/$(BOARD)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH_5)/boards/$(BOARD)/bootloader_defs.h
else ifneq ("$(wildcard $(KEYBOARD_PATH_4)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH_4)/bootloader_defs.h
else ifneq ("$(wildcard $(KEYBOARD_PATH_4)/boards/$(BOARD)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH_4)/boards/$(BOARD)/bootloader_defs.h
else ifneq ("$(wildcard $(KEYBOARD_PATH_3)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH_3)/bootloader_defs.h
else ifneq ("$(wildcard $(KEYBOARD_PATH_3)/boards/$(BOARD)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH_3)/boards/$(BOARD)/bootloader_defs.h
else ifneq ("$(wildcard $(KEYBOARD_PATH_2)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH_2)/bootloader_defs.h
else ifneq ("$(wildcard $(KEYBOARD_PATH_2)/boards/$(BOARD)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH_2)/boards/$(BOARD)/bootloader_defs.h
else ifneq ("$(wildcard $(KEYBOARD_PATH_1)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH_1)/bootloader_defs.h
else ifneq ("$(wildcard $(KEYBOARD_PATH_1)/boards/$(BOARD)/bootloader_defs.h)","")
OPT_DEFS += -include $(KEYBOARD_PATH_1)/boards/$(BOARD)/bootloader_defs.h
else ifneq ("$(wildcard $(TOP_DIR)/drivers/boards/$(BOARD)/bootloader_defs.h)","")
OPT_DEFS += -include $(TOP_DIR)/drivers/boards/$(BOARD)/bootloader_defs.h
endif
endif
# Find all of the config.h files and add them to our CONFIG_H define.
CONFIG_H :=
ifneq ("$(wildcard $(KEYBOARD_PATH_5)/config.h)","")
@ -304,11 +279,6 @@ ifneq ("$(wildcard $(KEYBOARD_PATH_5)/post_config.h)","")
POST_CONFIG_H += $(KEYBOARD_PATH_5)/post_config.h
endif
# Save the defines and includes here, so we don't include any keymap specific ones
PROJECT_DEFS := $(OPT_DEFS)
PROJECT_INC := $(VPATH) $(EXTRAINCDIRS) $(KEYBOARD_PATHS)
PROJECT_CONFIG := $(CONFIG_H)
# Userspace setup and definitions
ifeq ("$(USER_NAME)","")
USER_NAME := $(KEYMAP)
@ -354,23 +324,17 @@ SRC += $(TMK_COMMON_SRC)
OPT_DEFS += $(TMK_COMMON_DEFS)
EXTRALDFLAGS += $(TMK_COMMON_LDFLAGS)
ifeq ($(PLATFORM),AVR)
ifeq ($(strip $(PROTOCOL)), VUSB)
include $(TMK_PATH)/protocol/vusb.mk
include $(TMK_PATH)/$(PLATFORM_KEY).mk
ifneq ($(strip $(PROTOCOL)),)
include $(TMK_PATH)/protocol/$(strip $(shell echo $(PROTOCOL) | tr '[:upper:]' '[:lower:]')).mk
else
include $(TMK_PATH)/protocol/lufa.mk
endif
include $(TMK_PATH)/avr.mk
include $(TMK_PATH)/protocol/$(PLATFORM_KEY).mk
endif
ifeq ($(PLATFORM),ARM_ATSAM)
include $(TMK_PATH)/arm_atsam.mk
include $(TMK_PATH)/protocol/arm_atsam.mk
endif
ifeq ($(PLATFORM),CHIBIOS)
include $(TMK_PATH)/protocol/chibios.mk
endif
# TODO: remove this bodge?
PROJECT_DEFS := $(OPT_DEFS)
PROJECT_INC := $(VPATH) $(EXTRAINCDIRS) $(KEYBOARD_PATHS)
PROJECT_CONFIG := $(CONFIG_H)
ifeq ($(strip $(VISUALIZER_ENABLE)), yes)
VISUALIZER_DIR = $(QUANTUM_DIR)/visualizer

View File

@ -41,6 +41,7 @@ all: elf
VPATH += $(COMMON_VPATH)
PLATFORM:=TEST
PLATFORM_KEY:=test
ifneq ($(filter $(FULL_TESTS),$(TEST)),)
include tests/$(TEST)/rules.mk

View File

@ -13,52 +13,42 @@
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
SERIAL_DIR := $(QUANTUM_DIR)/serial_link
SERIAL_PATH := $(QUANTUM_PATH)/serial_link
SERIAL_SRC := $(wildcard $(SERIAL_PATH)/protocol/*.c)
SERIAL_SRC += $(wildcard $(SERIAL_PATH)/system/*.c)
SERIAL_DEFS += -DSERIAL_LINK_ENABLE
COMMON_VPATH += $(SERIAL_PATH)
QUANTUM_SRC += \
$(QUANTUM_DIR)/quantum.c \
$(QUANTUM_DIR)/keymap_common.c \
$(QUANTUM_DIR)/keycode_config.c
ifeq ($(strip $(API_SYSEX_ENABLE)), yes)
OPT_DEFS += -DAPI_SYSEX_ENABLE
SRC += $(QUANTUM_DIR)/api/api_sysex.c
OPT_DEFS += -DAPI_ENABLE
SRC += $(QUANTUM_DIR)/api.c
MIDI_ENABLE=yes
SRC += $(QUANTUM_DIR)/api/api_sysex.c
SRC += $(QUANTUM_DIR)/api.c
endif
MUSIC_ENABLE := 0
ifeq ($(strip $(AUDIO_ENABLE)), yes)
OPT_DEFS += -DAUDIO_ENABLE
MUSIC_ENABLE := 1
MUSIC_ENABLE = yes
SRC += $(QUANTUM_DIR)/process_keycode/process_audio.c
SRC += $(QUANTUM_DIR)/process_keycode/process_clicky.c
ifeq ($(PLATFORM),AVR)
SRC += $(QUANTUM_DIR)/audio/audio.c
else
SRC += $(QUANTUM_DIR)/audio/audio_arm.c
endif
SRC += $(QUANTUM_DIR)/audio/audio_$(PLATFORM_KEY).c
SRC += $(QUANTUM_DIR)/audio/voices.c
SRC += $(QUANTUM_DIR)/audio/luts.c
endif
ifeq ($(strip $(MIDI_ENABLE)), yes)
OPT_DEFS += -DMIDI_ENABLE
MUSIC_ENABLE := 1
MUSIC_ENABLE = yes
SRC += $(QUANTUM_DIR)/process_keycode/process_midi.c
endif
ifeq ($(MUSIC_ENABLE), 1)
MUSIC_ENABLE ?= no
ifeq ($(MUSIC_ENABLE), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_music.c
endif
ifeq ($(strip $(COMBO_ENABLE)), yes)
OPT_DEFS += -DCOMBO_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_combo.c
endif
ifeq ($(strip $(STENO_ENABLE)), yes)
OPT_DEFS += -DSTENO_ENABLE
VIRTSER_ENABLE ?= yes
@ -80,28 +70,6 @@ ifeq ($(strip $(POINTING_DEVICE_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/pointing_device.c
endif
ifeq ($(strip $(UCIS_ENABLE)), yes)
OPT_DEFS += -DUCIS_ENABLE
UNICODE_COMMON := yes
SRC += $(QUANTUM_DIR)/process_keycode/process_ucis.c
endif
ifeq ($(strip $(UNICODEMAP_ENABLE)), yes)
OPT_DEFS += -DUNICODEMAP_ENABLE
UNICODE_COMMON := yes
SRC += $(QUANTUM_DIR)/process_keycode/process_unicodemap.c
endif
ifeq ($(strip $(UNICODE_ENABLE)), yes)
OPT_DEFS += -DUNICODE_ENABLE
UNICODE_COMMON := yes
SRC += $(QUANTUM_DIR)/process_keycode/process_unicode.c
endif
ifeq ($(strip $(UNICODE_COMMON)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_unicode_common.c
endif
VALID_EEPROM_DRIVER_TYPES := vendor custom transient i2c
EEPROM_DRIVER ?= vendor
ifeq ($(filter $(EEPROM_DRIVER),$(VALID_EEPROM_DRIVER_TYPES)),)
@ -249,31 +217,18 @@ ifeq ($(strip $(RGB_KEYCODES_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_rgb.c
endif
ifeq ($(strip $(TAP_DANCE_ENABLE)), yes)
OPT_DEFS += -DTAP_DANCE_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_tap_dance.c
endif
ifeq ($(strip $(KEY_LOCK_ENABLE)), yes)
OPT_DEFS += -DKEY_LOCK_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_key_lock.c
endif
ifeq ($(strip $(PRINTING_ENABLE)), yes)
OPT_DEFS += -DPRINTING_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_printer.c
SRC += $(TMK_DIR)/protocol/serial_uart.c
endif
ifeq ($(strip $(AUTO_SHIFT_ENABLE)), yes)
OPT_DEFS += -DAUTO_SHIFT_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_auto_shift.c
ifeq ($(strip $(AUTO_SHIFT_MODIFIERS)), yes)
OPT_DEFS += -DAUTO_SHIFT_MODIFIERS
endif
endif
ifeq ($(strip $(SERIAL_LINK_ENABLE)), yes)
SERIAL_SRC := $(wildcard $(SERIAL_PATH)/protocol/*.c)
SERIAL_SRC += $(wildcard $(SERIAL_PATH)/system/*.c)
SERIAL_DEFS += -DSERIAL_LINK_ENABLE
COMMON_VPATH += $(SERIAL_PATH)
SRC += $(patsubst $(QUANTUM_PATH)/%,%,$(SERIAL_SRC))
OPT_DEFS += $(SERIAL_DEFS)
VAPTH += $(SERIAL_PATH)
@ -315,11 +270,7 @@ ifeq ($(strip $(BACKLIGHT_ENABLE)), yes)
else
SRC += $(QUANTUM_DIR)/backlight/backlight_driver_common.c
ifeq ($(strip $(BACKLIGHT_DRIVER)), pwm)
ifeq ($(PLATFORM),AVR)
SRC += $(QUANTUM_DIR)/backlight/backlight_avr.c
else
SRC += $(QUANTUM_DIR)/backlight/backlight_arm.c
endif
SRC += $(QUANTUM_DIR)/backlight/backlight_$(PLATFORM_KEY).c
else
SRC += $(QUANTUM_DIR)/backlight/backlight_$(strip $(BACKLIGHT_DRIVER)).c
endif
@ -371,34 +322,16 @@ ifeq ($(strip $(USB_HID_ENABLE)), yes)
include $(TMK_DIR)/protocol/usb_hid.mk
endif
ifeq ($(strip $(WPM_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/wpm.c
OPT_DEFS += -DWPM_ENABLE
endif
ifeq ($(strip $(ENCODER_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/encoder.c
OPT_DEFS += -DENCODER_ENABLE
endif
HAPTIC_ENABLE ?= no
ifneq ($(strip $(HAPTIC_ENABLE)),no)
COMMON_VPATH += $(DRIVER_PATH)/haptic
SRC += haptic.c
OPT_DEFS += -DHAPTIC_ENABLE
endif
ifneq ($(filter DRV2605L, $(HAPTIC_ENABLE)), )
SRC += DRV2605L.c
QUANTUM_LIB_SRC += i2c_master.c
OPT_DEFS += -DDRV2605L
endif
ifneq ($(filter SOLENOID, $(HAPTIC_ENABLE)), )
SRC += solenoid.c
OPT_DEFS += -DSOLENOID_ENABLE
endif
ifeq ($(strip $(HD44780_ENABLE)), yes)
SRC += drivers/avr/hd44780.c
OPT_DEFS += -DHD44780_ENABLE
endif
ifeq ($(strip $(VELOCIKEY_ENABLE)), yes)
OPT_DEFS += -DVELOCIKEY_ENABLE
SRC += $(QUANTUM_DIR)/velocikey.c
@ -417,26 +350,11 @@ ifeq ($(strip $(DYNAMIC_KEYMAP_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/dynamic_keymap.c
endif
ifeq ($(strip $(LEADER_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_leader.c
OPT_DEFS += -DLEADER_ENABLE
endif
ifeq ($(strip $(DIP_SWITCH_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/dip_switch.c
OPT_DEFS += -DDIP_SWITCH_ENABLE
SRC += $(QUANTUM_DIR)/dip_switch.c
endif
include $(DRIVER_PATH)/qwiic/qwiic.mk
QUANTUM_SRC:= \
$(QUANTUM_DIR)/quantum.c \
$(QUANTUM_DIR)/keymap_common.c \
$(QUANTUM_DIR)/keycode_config.c
VALID_CUSTOM_MATRIX_TYPES:= yes lite no
CUSTOM_MATRIX ?= no
@ -494,6 +412,29 @@ ifeq ($(strip $(SPLIT_KEYBOARD)), yes)
COMMON_VPATH += $(QUANTUM_PATH)/split_common
endif
HAPTIC_ENABLE ?= no
ifneq ($(strip $(HAPTIC_ENABLE)),no)
COMMON_VPATH += $(DRIVER_PATH)/haptic
SRC += haptic.c
OPT_DEFS += -DHAPTIC_ENABLE
endif
ifneq ($(filter DRV2605L, $(HAPTIC_ENABLE)), )
SRC += DRV2605L.c
QUANTUM_LIB_SRC += i2c_master.c
OPT_DEFS += -DDRV2605L
endif
ifneq ($(filter SOLENOID, $(HAPTIC_ENABLE)), )
SRC += solenoid.c
OPT_DEFS += -DSOLENOID_ENABLE
endif
ifeq ($(strip $(HD44780_ENABLE)), yes)
SRC += drivers/avr/hd44780.c
OPT_DEFS += -DHD44780_ENABLE
endif
ifeq ($(strip $(OLED_DRIVER_ENABLE)), yes)
OPT_DEFS += -DOLED_DRIVER_ENABLE
COMMON_VPATH += $(DRIVER_PATH)/oled
@ -501,6 +442,30 @@ ifeq ($(strip $(OLED_DRIVER_ENABLE)), yes)
SRC += oled_driver.c
endif
include $(DRIVER_PATH)/qwiic/qwiic.mk
ifeq ($(strip $(UCIS_ENABLE)), yes)
OPT_DEFS += -DUCIS_ENABLE
UNICODE_COMMON := yes
SRC += $(QUANTUM_DIR)/process_keycode/process_ucis.c
endif
ifeq ($(strip $(UNICODEMAP_ENABLE)), yes)
OPT_DEFS += -DUNICODEMAP_ENABLE
UNICODE_COMMON := yes
SRC += $(QUANTUM_DIR)/process_keycode/process_unicodemap.c
endif
ifeq ($(strip $(UNICODE_ENABLE)), yes)
OPT_DEFS += -DUNICODE_ENABLE
UNICODE_COMMON := yes
SRC += $(QUANTUM_DIR)/process_keycode/process_unicode.c
endif
ifeq ($(strip $(UNICODE_COMMON)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_unicode_common.c
endif
SPACE_CADET_ENABLE ?= yes
ifeq ($(strip $(SPACE_CADET_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_space_cadet.c
@ -523,3 +488,31 @@ ifeq ($(strip $(DYNAMIC_MACRO_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_dynamic_macro.c
OPT_DEFS += -DDYNAMIC_MACRO_ENABLE
endif
ifeq ($(strip $(COMBO_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_combo.c
OPT_DEFS += -DCOMBO_ENABLE
endif
ifeq ($(strip $(TAP_DANCE_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_tap_dance.c
OPT_DEFS += -DTAP_DANCE_ENABLE
endif
ifeq ($(strip $(KEY_LOCK_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_key_lock.c
OPT_DEFS += -DKEY_LOCK_ENABLE
endif
ifeq ($(strip $(LEADER_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_leader.c
OPT_DEFS += -DLEADER_ENABLE
endif
ifeq ($(strip $(AUTO_SHIFT_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_auto_shift.c
OPT_DEFS += -DAUTO_SHIFT_ENABLE
ifeq ($(strip $(AUTO_SHIFT_MODIFIERS)), yes)
OPT_DEFS += -DAUTO_SHIFT_MODIFIERS
endif
endif

View File

@ -6,6 +6,7 @@
* [Testing and Debugging](newbs_testing_debugging.md)
* [Getting Help/Support](support.md)
* [Other Resources](newbs_learn_more_resources.md)
* [Syllabus](syllabus.md)
* FAQs
* [General FAQ](faq_general.md)
@ -52,7 +53,7 @@
* Simple Keycodes
* [Full List](keycodes.md)
* [Basic Keycodes](keycodes_basic.md)
* [Layer Switching](feature_advanced_keycodes.md)
* [Modifier Keys](feature_advanced_keycodes.md)
* [Quantum Keycodes](quantum_keycodes.md)
* Advanced Keycodes
@ -71,14 +72,17 @@
* [Combos](feature_combo.md)
* [Debounce API](feature_debounce_type.md)
* [Key Lock](feature_key_lock.md)
* [Layers](feature_layers.md)
* [One Shot Keys](one_shot_keys.md)
* [Pointing Device](feature_pointing_device.md)
* [Raw HID](feature_rawhid.md)
* [Swap Hands](feature_swap_hands.md)
* [Tap Dance](feature_tap_dance.md)
* [Tap-Hold Configuration](tap_hold.md)
* [Terminal](feature_terminal.md)
* [Unicode](feature_unicode.md)
* [Userspace](feature_userspace.md)
* [WPM Calculation](feature_wpm.md)
* Hardware Features
* Displays
@ -119,6 +123,7 @@
* [Drivers](hardware_drivers.md)
* [ADC Driver](adc_driver.md)
* [I2C Driver](i2c_driver.md)
* [SPI Driver](spi_driver.md)
* [WS2812 Driver](ws2812_driver.md)
* [EEPROM Driver](eeprom_driver.md)
* [GPIO Controls](internals_gpio_control.md)
@ -133,6 +138,10 @@
* [Development Environment](api_development_environment.md)
* [Architecture Overview](api_development_overview.md)
* Hardware Platform Development
* Arm/ChibiOS
* [Early initialization](platformdev_chibios_earlyinit.md)
* QMK Reference
* [Contributing to QMK](contributing.md)
* [Translating the QMK Docs](translating.md)

View File

@ -2,7 +2,7 @@
QMK can leverage the Analog-to-Digital Converter (ADC) on supported MCUs to measure voltages on certain pins. This can be useful for implementing things such as battery level indicators for Bluetooth keyboards, or volume controls using a potentiometer, as opposed to a [rotary encoder](feature_encoders.md).
This driver currently supports both AVR and a limited selection of ARM devices. On AVR devices, the values returned are 10-bit integers (0-1023) mapped between 0V and VCC (usually 5V or 3.3V). On supported ARM devices, there is more flexibility in control of operation through `#define`s, but by default the values returned are 12-bit integers (0-4095) mapped between 0V and VCC (usually 3.3V).
This driver currently supports both AVR and a limited selection of ARM devices. The values returned are 10-bit integers (0-1023) mapped between 0V and VCC (usually 5V or 3.3V for AVR, 3.3V only for ARM), however on ARM there is more flexibility in control of operation through `#define`s if you need more precision.
## Usage

View File

@ -6,7 +6,7 @@ The QMK CLI makes building and working with QMK keyboards easier. We have provid
### Requirements :id=requirements
The CLI requires Python 3.5 or greater. We try to keep the number of requirements small but you will also need to install the packages listed in [`requirements.txt`](https://github.com/qmk/qmk_firmware/blob/master/requirements.txt). These are installed automatically when you install the QMK CLI.
QMK requires Python 3.6 or greater. We try to keep the number of requirements small but you will also need to install the packages listed in [`requirements.txt`](https://github.com/qmk/qmk_firmware/blob/master/requirements.txt). These are installed automatically when you install the QMK CLI.
### Install Using Homebrew (macOS, some Linux) :id=install-using-homebrew
@ -21,7 +21,7 @@ qmk setup # This will clone `qmk/qmk_firmware` and optionally set up your build
### Install Using easy_install or pip :id=install-using-easy_install-or-pip
If your system is not listed above you can install QMK manually. First ensure that you have python 3.5 (or later) installed and have installed pip. Then install QMK with this command:
If your system is not listed above you can install QMK manually. First ensure that you have python 3.6 (or later) installed and have installed pip. Then install QMK with this command:
```
pip3 install qmk

View File

@ -1,38 +1,6 @@
# QMK CLI Commands
# CLI Commands
## `qmk cformat`
This command formats C code using clang-format.
Run it with no arguments to format all core code that has been changed. Default checks `origin/master` with `git diff`, branch can be changed using `-b <branch_name>`
Run it with `-a` to format all core code, or pass filenames on the command line to run it on specific files.
**Usage for specified files**:
```
qmk cformat [file1] [file2] [...] [fileN]
```
**Usage for all core files**:
```
qmk cformat -a
```
**Usage for only changed files against origin/master**:
```
qmk cformat
```
**Usage for only changed files against branch_name**:
```
qmk cformat -b branch_name
```
# User Commands
## `qmk compile`
@ -136,16 +104,6 @@ This command lets you configure the behavior of QMK. For the full `qmk config` d
qmk config [-ro] [config_token1] [config_token2] [...] [config_tokenN]
```
## `qmk docs`
This command starts a local HTTP server which you can use for browsing or improving the docs. Default port is 8936.
**Usage**:
```
qmk docs [-p PORT]
```
## `qmk doctor`
This command examines your environment and alerts you to potential build or flash problems. It can fix many of them if you want it to.
@ -180,28 +138,6 @@ Creates a keymap.c from a QMK Configurator export.
qmk json2c [-o OUTPUT] filename
```
## `qmk kle2json`
This command allows you to convert from raw KLE data to QMK Configurator JSON. It accepts either an absolute file path, or a file name in the current directory. By default it will not overwrite `info.json` if it is already present. Use the `-f` or `--force` flag to overwrite.
**Usage**:
```
qmk kle2json [-f] <filename>
```
**Examples**:
```
$ qmk kle2json kle.txt
☒ File info.json already exists, use -f or --force to overwrite.
```
```
$ qmk kle2json -f kle.txt -f
Ψ Wrote out to info.json
```
## `qmk list-keyboards`
This command lists all the keyboards currently defined in `qmk_firmware`
@ -232,6 +168,74 @@ This command creates a new keymap based on a keyboard's existing default keymap.
qmk new-keymap [-kb KEYBOARD] [-km KEYMAP]
```
---
# Developer Commands
## `qmk cformat`
This command formats C code using clang-format.
Run it with no arguments to format all core code that has been changed. Default checks `origin/master` with `git diff`, branch can be changed using `-b <branch_name>`
Run it with `-a` to format all core code, or pass filenames on the command line to run it on specific files.
**Usage for specified files**:
```
qmk cformat [file1] [file2] [...] [fileN]
```
**Usage for all core files**:
```
qmk cformat -a
```
**Usage for only changed files against origin/master**:
```
qmk cformat
```
**Usage for only changed files against branch_name**:
```
qmk cformat -b branch_name
```
## `qmk docs`
This command starts a local HTTP server which you can use for browsing or improving the docs. Default port is 8936.
**Usage**:
```
qmk docs [-p PORT]
```
## `qmk kle2json`
This command allows you to convert from raw KLE data to QMK Configurator JSON. It accepts either an absolute file path, or a file name in the current directory. By default it will not overwrite `info.json` if it is already present. Use the `-f` or `--force` flag to overwrite.
**Usage**:
```
qmk kle2json [-f] <filename>
```
**Examples**:
```
$ qmk kle2json kle.txt
☒ File info.json already exists, use -f or --force to overwrite.
```
```
$ qmk kle2json -f kle.txt -f
Ψ Wrote out to info.json
```
## `qmk pyformat`
This command formats python code in `qmk_firmware`.
@ -251,3 +255,4 @@ This command runs the python test suite. If you make changes to python code you
```
qmk pytest
```

View File

@ -6,6 +6,18 @@ This document has useful information for developers wishing to write new `qmk` s
The QMK CLI operates using the subcommand pattern made famous by git. The main `qmk` script is simply there to setup the environment and pick the correct entrypoint to run. Each subcommand is a self-contained module with an entrypoint (decorated by `@cli.subcommand()`) that performs some action and returns a shell returncode, or None.
## Developer mode:
If you intend to maintain keyboards and/or contribute to QMK, you can enable the CLI's "Developer" mode:
`qmk config user.developer=True`
This will allow you to see all available subcommands.
**Note:** You will have to install additional requirements:
```bash
python3 -m pip install -r requirements-dev.txt
```
# Subcommands
[MILC](https://github.com/clueboard/milc) is the CLI framework `qmk` uses to handle argument parsing, configuration, logging, and many other features. It lets you focus on writing your tool without wasting your time writing glue code.
@ -32,7 +44,7 @@ def hello(cli):
First we import the `cli` object from `milc`. This is how we interact with the user and control the script's behavior. We use `@cli.argument()` to define a command line flag, `--name`. This also creates a configuration variable named `hello.name` (and the corresponding `user.name`) which the user can set so they don't have to specify the argument. The `cli.subcommand()` decorator designates this function as a subcommand. The name of the subcommand will be taken from the name of the function.
Once inside our function we find a typical "Hello, World!" program. We use `cli.log` to access the underlying [Logger Object](https://docs.python.org/3.5/library/logging.html#logger-objects), whose behavior is user controllable. We also access the value for name supplied by the user as `cli.config.hello.name`. The value for `cli.config.hello.name` will be determined by looking at the `--name` argument supplied by the user, if not provided it will use the value in the `qmk.ini` config file, and if neither of those is provided it will fall back to the default supplied in the `cli.argument()` decorator.
Once inside our function we find a typical "Hello, World!" program. We use `cli.log` to access the underlying [Logger Object](https://docs.python.org/3.6/library/logging.html#logger-objects), whose behavior is user controllable. We also access the value for name supplied by the user as `cli.config.hello.name`. The value for `cli.config.hello.name` will be determined by looking at the `--name` argument supplied by the user, if not provided it will use the value in the `qmk.ini` config file, and if neither of those is provided it will fall back to the default supplied in the `cli.argument()` decorator.
# User Interaction
@ -44,13 +56,13 @@ There are two main methods for outputting text in a subcommand- `cli.log` and `c
You can use special tokens to colorize your text, to make it easier to understand the output of your program. See [Colorizing Text](#colorizing-text) below.
Both of these methods support built-in string formatting using python's [printf style string format operations](https://docs.python.org/3.5/library/stdtypes.html#old-string-formatting). You can use tokens such as `%s` and `%d` within your text strings then pass the values as arguments. See our Hello, World program above for an example.
Both of these methods support built-in string formatting using python's [printf style string format operations](https://docs.python.org/3.6/library/stdtypes.html#old-string-formatting). You can use tokens such as `%s` and `%d` within your text strings then pass the values as arguments. See our Hello, World program above for an example.
You should never use the format operator (`%`) directly, always pass values as arguments.
### Logging (`cli.log`)
The `cli.log` object gives you access to a [Logger Object](https://docs.python.org/3.5/library/logging.html#logger-objects). We have configured our log output to show the user a nice emoji for each log level (or the log level name if their terminal does not support unicode.) This way the user can tell at a glance which messages are most important when something goes wrong.
The `cli.log` object gives you access to a [Logger Object](https://docs.python.org/3.6/library/logging.html#logger-objects). We have configured our log output to show the user a nice emoji for each log level (or the log level name if their terminal does not support unicode.) This way the user can tell at a glance which messages are most important when something goes wrong.
The default log level is `INFO`. If the user runs `qmk -v <subcommand>` the default log level will be set to `DEBUG`.

View File

@ -20,11 +20,11 @@ Most of our style is pretty easy to pick up on, but right now it's not entirely
* We accept both forms of preprocessor if's: `#ifdef DEFINED` and `#if defined(DEFINED)`
* If you are not sure which to prefer use the `#if defined(DEFINED)` form.
* Do not change existing code from one style to the other, except when moving to a multiple condition `#if`.
* Do not put whitespace between `#` and `if`.
* When deciding how (or if) to indent directives keep these points in mind:
* When deciding how (or if) to indent preprocessor directives, keep these points in mind:
* Readability is more important than consistency.
* Follow the file's existing style. If the file is mixed follow the style that makes sense for the section you are modifying.
* When choosing to indent you can follow the indention level of the surrounding C code, or preprocessor directives can have their own indent level. Choose the style that best communicates the intent of your code.
* Follow the file's existing style. If the file is mixed, follow the style that makes sense for the section you are modifying.
* When indenting, keep the hash at the start of the line and add whitespace between `#` and `if`, starting with 4 spaces after the `#`.
* You can follow the indention level of the surrounding C code, or preprocessor directives can have their own indentation levels. Choose the style that best communicates the intent of your code.
Here is an example for easy reference:

View File

@ -2,7 +2,7 @@
Most of our style follows PEP8 with some local modifications to make things less nit-picky.
* We target Python 3.5 for compatability with all supported platforms.
* We target Python 3.6 for compatability with all supported platforms.
* We indent using four (4) spaces (soft tabs)
* We encourage liberal use of comments
* Think of them as a story describing the feature
@ -317,7 +317,7 @@ At the time of this writing our tests are not very comprehensive. Looking at the
## Integration Tests
Integration tests can be found in `lib/python/qmk/tests/test_cli_commands.py`. This is where CLI commands are actually run and their overall behavior is verified. We use [`subprocess`](https://docs.python.org/3.5/library/subprocess.html#module-subprocess) to launch each CLI command and a combination of checking output and returncode to determine if the right thing happened.
Integration tests can be found in `lib/python/qmk/tests/test_cli_commands.py`. This is where CLI commands are actually run and their overall behavior is verified. We use [`subprocess`](https://docs.python.org/3.6/library/subprocess.html#module-subprocess) to launch each CLI command and a combination of checking output and returncode to determine if the right thing happened.
## Unit Tests

View File

@ -115,9 +115,9 @@ If you define these options you will disable the associated feature, which can s
* `#define NO_ACTION_ONESHOT`
* disable one-shot modifiers
* `#define NO_ACTION_MACRO`
* disable old style macro handling: MACRO() & action_get_macro
* disable old-style macro handling using `MACRO()`, `action_get_macro()` _(deprecated)_
* `#define NO_ACTION_FUNCTION`
* disable calling of action_function() from the fn_actions array (deprecated)
* disable old-style function handling using `fn_actions`, `action_function()` _(deprecated)_
## Features That Can Be Enabled
@ -191,7 +191,12 @@ If you define these options you will enable the associated feature, which may in
* `#define RGBLIGHT_ANIMATIONS`
* run RGB animations
* `#define RGBLIGHT_LAYERS`
* Lets you define [lighting layers](feature_rgblight.md) that can be toggled on or off. Great for showing the current keyboard layer or caps lock state.
* Lets you define [lighting layers](feature_rgblight.md?id=lighting-layers) that can be toggled on or off. Great for showing the current keyboard layer or caps lock state.
* `#define RGBLIGHT_MAX_LAYERS`
* Defaults to 8. Can be expanded up to 32 if more [lighting layers](feature_rgblight.md?id=lighting-layers) are needed.
* Note: Increasing the maximum will increase the firmware size and slow sync on split keyboards.
* `#define RGBLIGHT_LAYER_BLINK`
* Adds ability to [blink](feature_rgblight.md?id=lighting-layer-blink) a lighting layer for a specified number of milliseconds (e.g. to acknowledge an action).
* `#define RGBLED_NUM 12`
* number of LEDs
* `#define RGBLIGHT_SPLIT`
@ -317,10 +322,10 @@ This is a [make](https://www.gnu.org/software/make/manual/make.html) file that i
* `LAYOUTS`
* A list of [layouts](feature_layouts.md) this keyboard supports.
* `LINK_TIME_OPTIMIZATION_ENABLE`
* Enables Link Time Optimization (`LTO`) when compiling the keyboard. This makes the process take longer, but can significantly reduce the compiled size (and since the firmware is small, the added time is not noticeable). However, this will automatically disable the old Macros and Functions features automatically, as these break when `LTO` is enabled.
It does this by automatically defining `NO_ACTION_MACRO` and `NO_ACTION_FUNCTION`
* Enables Link Time Optimization (LTO) when compiling the keyboard. This makes the process take longer, but it can significantly reduce the compiled size (and since the firmware is small, the added time is not noticeable).
However, this will automatically disable the legacy TMK Macros and Functions features, as these break when LTO is enabled. It does this by automatically defining `NO_ACTION_MACRO` and `NO_ACTION_FUNCTION`. (Note: This does not affect QMK [Macros](feature_macros.md) and [Layers](feature_layers.md).)
* `LTO_ENABLE`
* It has the same meaning as LINK_TIME_OPTIMIZATION_ENABLE. You can use `LTO_ENABLE` instead of `LINK_TIME_OPTIMIZATION_ENABLE`.
* Has the same meaning as `LINK_TIME_OPTIMIZATION_ENABLE`. You can use `LTO_ENABLE` instead of `LINK_TIME_OPTIMIZATION_ENABLE`.
## AVR MCU Options
* `MCU = atmega32u4`

View File

@ -98,6 +98,7 @@
* [ISP Flashing Guide](de/isp_flashing_guide.md)
* [ARM Debugging Guide](de/arm_debugging.md)
* [I2C Driver](de/i2c_driver.md)
* [SPI Driver](de/spi_driver.md)
* [GPIO Controls](de/internals_gpio_control.md)
* [Proton C Conversion](de/proton_c_conversion.md)

View File

@ -98,6 +98,7 @@
* [Guía de flasheado de ISP](es/isp_flashing_guide.md)
* [Guía de depuración de ARM](es/arm_debugging.md)
* [Driver I2C](es/i2c_driver.md)
* [Driver SPI](es/spi_driver.md)
* [Controles GPIO](es/internals_gpio_control.md)
* [Conversión Proton C](es/proton_c_conversion.md)

View File

@ -160,10 +160,3 @@ As of now root of its cause is not clear but some build options seem to be relat
https://github.com/tmk/tmk_keyboard/issues/266
https://geekhack.org/index.php?topic=41989.msg1967778#msg1967778
## FLIP Doesn't Work
### `AtLibUsbDfu.dll` Not Found
Remove current driver and reinstall one FLIP provides from DeviceManager.
http://imgur.com/a/bnwzy

View File

@ -1,46 +1,3 @@
# Switching and Toggling Layers :id=switching-and-toggling-layers
These functions allow you to activate layers in various ways. Note that layers are not generally independent layouts -- multiple layers can be activated at once, and it's typical for layers to use `KC_TRNS` to allow keypresses to pass through to lower layers. For a detailed explanation of layers, see [Keymap Overview](keymap.md#keymap-and-layers). When using momentary layer switching with MO(), LM(), TT(), or LT(), make sure to leave the key on the above layers transparent or it may not work as intended.
* `DF(layer)` - switches the default layer. The default layer is the always-active base layer that other layers stack on top of. See below for more about the default layer. This might be used to switch from QWERTY to Dvorak layout. (Note that this is a temporary switch that only persists until the keyboard loses power. To modify the default layer in a persistent way requires deeper customization, such as calling the `set_single_persistent_default_layer` function inside of [process_record_user](custom_quantum_functions.md#programming-the-behavior-of-any-keycode).)
* `MO(layer)` - momentarily activates *layer*. As soon as you let go of the key, the layer is deactivated.
* `LM(layer, mod)` - Momentarily activates *layer* (like `MO`), but with modifier(s) *mod* active. Only supports layers 0-15 and the left modifiers: `MOD_LCTL`, `MOD_LSFT`, `MOD_LALT`, `MOD_LGUI` (note the use of `MOD_` constants instead of `KC_`). These modifiers can be combined using bitwise OR, e.g. `LM(_RAISE, MOD_LCTL | MOD_LALT)`.
* `LT(layer, kc)` - momentarily activates *layer* when held, and sends *kc* when tapped. Only supports layers 0-15.
* `OSL(layer)` - momentarily activates *layer* until the next key is pressed. See [One Shot Keys](one_shot_keys.md) for details and additional functionality.
* `TG(layer)` - toggles *layer*, activating it if it's inactive and vice versa
* `TO(layer)` - activates *layer* and de-activates all other layers (except your default layer). This function is special, because instead of just adding/removing one layer to your active layer stack, it will completely replace your current active layers, uniquely allowing you to replace higher layers with a lower one. This is activated on keydown (as soon as the key is pressed).
* `TT(layer)` - Layer Tap-Toggle. If you hold the key down, *layer* is activated, and then is de-activated when you let go (like `MO`). If you repeatedly tap it, the layer will be toggled on or off (like `TG`). It needs 5 taps by default, but you can change this by defining `TAPPING_TOGGLE` -- for example, `#define TAPPING_TOGGLE 2` to toggle on just two taps.
## Caveats
Currently, `LT()` and `MT()` are limited to the [Basic Keycode set](keycodes_basic.md), meaning you can't use keycodes like `LCTL()`, `KC_TILD`, or anything greater than `0xFF`. Modifiers specified as part of a Layer Tap or Mod Tap's keycode will be ignored. If you need to apply modifiers to your tapped keycode, [Tap Dance](feature_tap_dance.md#example-5-using-tap-dance-for-advanced-mod-tap-and-layer-tap-keys) can be used to accomplish this.
Additionally, if at least one right-handed modifier is specified in a Mod Tap or Layer Tap, it will cause all modifiers specified to become right-handed, so it is not possible to mix and match the two.
# Working with Layers
Care must be taken when switching layers, it's possible to lock yourself into a layer with no way to deactivate that layer (without unplugging your keyboard.) We've created some guidelines to help users avoid the most common problems.
## Beginners
If you are just getting started with QMK you will want to keep everything simple. Follow these guidelines when setting up your layers:
* Setup layer 0 as your default, "base" layer. This is your normal typing layer, and could be whatever layout you want (qwerty, dvorak, colemak, etc.). It's important to set this as the lowest layer since it will typically have most or all of the keyboard's keys defined, so would block other layers from having any effect if it were above them (i.e., had a higher layer number).
* Arrange your layers in a "tree" layout, with layer 0 as the root. Do not try to enter the same layer from more than one other layer.
* In a layer's keymap, only reference higher-numbered layers. Because layers are processed from the highest-numbered (topmost) active layer down, modifying the state of lower layers can be tricky and error-prone.
## Intermediate Users
Sometimes you need more than one base layer. For example, if you want to switch between QWERTY and Dvorak, switch between layouts for different countries, or switch your layout for different videogames. Your base layers should always be the lowest numbered layers. When you have multiple base layers you should always treat them as mutually exclusive. When one base layer is on the others are off.
## Advanced Users
Once you have a good feel for how layers work and what you can do, you can get more creative. The rules listed in the beginner section will help you be successful by avoiding some of the tricker details but they can be constraining, especially for ultra-compact keyboard users. Understanding how layers work will allow you to use them in more advanced ways.
Layers stack on top of each other in numerical order. When determining what a keypress does, QMK scans the layers from the top down, stopping when it reaches the first active layer that is not set to `KC_TRNS`. As a result if you activate a layer that is numerically lower than your current layer, and your current layer (or another layer that is active and higher than your target layer) has something other than `KC_TRNS`, that is the key that will be sent, not the key on the layer you just activated. This is the cause of most people's "why doesn't my layer get switched" problem.
Sometimes, you might want to switch between layers in a macro or as part of a tap dance routine. `layer_on` activates a layer, and `layer_off` deactivates it. More layer-related functions can be found in [action_layer.h](https://github.com/qmk/qmk_firmware/blob/master/tmk_core/common/action_layer.h).
# Modifier Keys :id=modifier-keys
These allow you to combine a modifier with a keycode. When pressed, the keydown event for the modifier, then `kc` will be sent. On release, the keyup event for `kc`, then the modifier will be sent.
@ -49,11 +6,11 @@ These allow you to combine a modifier with a keycode. When pressed, the keydown
|----------|-------------------------------|----------------------------------------------------|
|`LCTL(kc)`|`C(kc)` |Hold Left Control and press `kc` |
|`LSFT(kc)`|`S(kc)` |Hold Left Shift and press `kc` |
|`LALT(kc)`|`A(kc)` |Hold Left Alt and press `kc` |
|`LALT(kc)`|`A(kc)`, `LOPT(kc)` |Hold Left Alt and press `kc` |
|`LGUI(kc)`|`G(kc)`, `LCMD(kc)`, `LWIN(kc)`|Hold Left GUI and press `kc` |
|`RCTL(kc)`| |Hold Right Control and press `kc` |
|`RSFT(kc)`| |Hold Right Shift and press `kc` |
|`RALT(kc)`|`ALGR(kc)` |Hold Right Alt and press `kc` |
|`RALT(kc)`|`ROPT(kc)`, `ALGR(kc)` |Hold Right Alt and press `kc` |
|`RGUI(kc)`|`RCMD(kc)`, `LWIN(kc)` |Hold Right GUI and press `kc` |
|`SGUI(kc)`|`SCMD(kc)`, `SWIN(kc)` |Hold Left Shift and GUI and press `kc` |
|`LCA(kc)` | |Hold Left Control and Alt and press `kc` |
@ -61,12 +18,16 @@ These allow you to combine a modifier with a keycode. When pressed, the keydown
|`MEH(kc)` | |Hold Left Control, Shift and Alt and press `kc` |
|`HYPR(kc)`| |Hold Left Control, Shift, Alt and GUI and press `kc`|
You can also chain them, for example `LCTL(LALT(KC_DEL))` makes a key that sends Control+Alt+Delete with a single keypress.
You can also chain them, for example `LCTL(LALT(KC_DEL))` or `C(A(KC_DEL))` makes a key that sends Control+Alt+Delete with a single keypress.
# Legacy Content
# Legacy Content :id=legacy-content
This page used to encompass a large set of features. We have moved many sections that used to be part of this page to their own pages. Everything below this point is simply a redirect so that people following old links on the web find what they're looking for.
## Layers :id=switching-and-toggling-layers
* [Layers](feature_layers.md)
## Mod-Tap :id=mod-tap
* [Mod-Tap](mod_tap.md)

View File

@ -144,6 +144,17 @@ And to trigger the bootloader, you hold this key down when plugging the keyboard
!> Using bootmagic lite will **always reset** the EEPROM, so you will lose any settings that have been saved.
## Split Keyboards
When handedness is predetermined via an option like `SPLIT_HAND_PIN`, you might need to configure a different key between halves. This To do so, add these entries to your `config.h` file:
```c
#define BOOTMAGIC_LITE_ROW_RIGHT 4
#define BOOTMAGIC_LITE_COLUMN_RIGHT 1
```
By default, these values are not set.
## Advanced Bootmagic Lite
The `bootmagic_lite` function is defined weakly, so that you can replace this in your code, if you need. A great example of this is the Zeal60 boards that have some additional handling needed.

View File

@ -38,5 +38,6 @@ For use in keyboards where refreshing ```NUM_KEYS``` 8-bit counters is computati
appropriate for the ErgoDox models; the matrix is rotated 90°, and hence its "rows" are really columns, and each finger only hits a single "row" at a time in normal use.
* eager_pk - debouncing per key. On any state change, response is immediate, followed by ```DEBOUNCE``` milliseconds of no further input for that key
* sym_g - debouncing per keyboard. On any state change, a global timer is set. When ```DEBOUNCE``` milliseconds of no changes has occured, all input changes are pushed.
* sym_pk - debouncing per key. On any state change, a per-key timer is set. When ```DEBOUNCE``` milliseconds of no changes have occured on that key, the key status change is pushed.

View File

@ -1,6 +1,6 @@
# HD44780 LCD Displays
This is an integration of Peter Fleury's LCD library. This page will explain the basics. [For in depth documentation visit his page.](http://homepage.hispeed.ch/peterfleury/doxygen/avr-gcc-libraries/group__pfleury__lcd.html)
This is an integration of Peter Fleury's LCD library. This page will explain the basics. [For in depth documentation visit his page.](http://www.peterfleury.epizy.com/doxygen/avr-gcc-libraries/group__pfleury__lcd.html)
You can enable support for HD44780 Displays by setting the `HD44780_ENABLE` flag in your keyboards `rules.mk` to yes.
@ -50,8 +50,8 @@ LCD_DISP_ON_CURSOR_BLINK : display on, cursor on flashing
````
This is best done in your keyboards `matrix_init_kb` or your keymaps `matrix_init_user`.
It is advised to clear the display before use.
To do so call `lcd_clrsrc()`.
To do so call `lcd_clrscr()`.
To now print something to your Display you first call `lcd_gotoxy(column, line)`. To go to the start of the first line you would call `lcd_gotoxy(0, 0)` and then print a string with `lcd_puts("example string")`.
There are more methods available to control the display. [For in depth documentation please visit the linked page.](http://homepage.hispeed.ch/peterfleury/doxygen/avr-gcc-libraries/group__pfleury__lcd.html)
There are more methods available to control the display. [For in depth documentation please visit the linked page.](http://www.peterfleury.epizy.com/doxygen/avr-gcc-libraries/group__pfleury__lcd.html)

94
docs/feature_layers.md Normal file
View File

@ -0,0 +1,94 @@
# Layers :id=layers
One of the most powerful and well used features of QMK Firmware is the ability to use layers. For most people, this amounts to a function key that allows for different keys, much like what you would see on a laptop or tablet keyboard.
For a detailed explanation of how the layer stack works, checkout [Keymap Overview](keymap.md#keymap-and-layers).
## Switching and Toggling Layers :id=switching-and-toggling-layers
These functions allow you to activate layers in various ways. Note that layers are not generally independent layouts -- multiple layers can be activated at once, and it's typical for layers to use `KC_TRNS` to allow keypresses to pass through to lower layers. When using momentary layer switching with MO(), LM(), TT(), or LT(), make sure to leave the key on the above layers transparent or it may not work as intended.
* `DF(layer)` - switches the default layer. The default layer is the always-active base layer that other layers stack on top of. See below for more about the default layer. This might be used to switch from QWERTY to Dvorak layout. (Note that this is a temporary switch that only persists until the keyboard loses power. To modify the default layer in a persistent way requires deeper customization, such as calling the `set_single_persistent_default_layer` function inside of [process_record_user](custom_quantum_functions.md#programming-the-behavior-of-any-keycode).)
* `MO(layer)` - momentarily activates *layer*. As soon as you let go of the key, the layer is deactivated.
* `LM(layer, mod)` - Momentarily activates *layer* (like `MO`), but with modifier(s) *mod* active. Only supports layers 0-15 and the left modifiers: `MOD_LCTL`, `MOD_LSFT`, `MOD_LALT`, `MOD_LGUI` (note the use of `MOD_` constants instead of `KC_`). These modifiers can be combined using bitwise OR, e.g. `LM(_RAISE, MOD_LCTL | MOD_LALT)`.
* `LT(layer, kc)` - momentarily activates *layer* when held, and sends *kc* when tapped. Only supports layers 0-15.
* `OSL(layer)` - momentarily activates *layer* until the next key is pressed. See [One Shot Keys](one_shot_keys.md) for details and additional functionality.
* `TG(layer)` - toggles *layer*, activating it if it's inactive and vice versa
* `TO(layer)` - activates *layer* and de-activates all other layers (except your default layer). This function is special, because instead of just adding/removing one layer to your active layer stack, it will completely replace your current active layers, uniquely allowing you to replace higher layers with a lower one. This is activated on keydown (as soon as the key is pressed).
* `TT(layer)` - Layer Tap-Toggle. If you hold the key down, *layer* is activated, and then is de-activated when you let go (like `MO`). If you repeatedly tap it, the layer will be toggled on or off (like `TG`). It needs 5 taps by default, but you can change this by defining `TAPPING_TOGGLE` -- for example, `#define TAPPING_TOGGLE 2` to toggle on just two taps.
### Caveats :id=caveats
Currently, `LT()` and `MT()` are limited to the [Basic Keycode set](keycodes_basic.md), meaning you can't use keycodes like `LCTL()`, `KC_TILD`, or anything greater than `0xFF`. Specifically, dual function keys like `LT` and `MT` use a 16 bit keycode. 4 bits are used for the function identifier, the next 12 are divided into the parameters. Layer Tap uses 4 bits for the layer (and is why it's limited to layers 0-16, actually), while Mod Tap does the same, 4 bits for the identifier, 4 bits for which mods are used, and all of them use 8 bits for the keycode. Because of this, the keycode used is limited to `0xFF` (0-255), which are the basic keycodes only.
Expanding this would be complicated, at best. Moving to a 32-bit keycode would solve a lot of this, but would double the amount of space that the keymap matrix uses. And it could potentially cause issues, too. If you need to apply modifiers to your tapped keycode, [Tap Dance](feature_tap_dance.md#example-5-using-tap-dance-for-advanced-mod-tap-and-layer-tap-keys) can be used to accomplish this.
Additionally, if at least one right-handed modifier is specified in a Mod Tap or Layer Tap, it will cause all modifiers specified to become right-handed, so it is not possible to mix and match the two.
## Working with Layers :id=working-with-layers
Care must be taken when switching layers, it's possible to lock yourself into a layer with no way to deactivate that layer (without unplugging your keyboard.) We've created some guidelines to help users avoid the most common problems.
### Beginners :id=beginners
If you are just getting started with QMK you will want to keep everything simple. Follow these guidelines when setting up your layers:
* Setup layer 0 as your default, "base" layer. This is your normal typing layer, and could be whatever layout you want (qwerty, dvorak, colemak, etc.). It's important to set this as the lowest layer since it will typically have most or all of the keyboard's keys defined, so would block other layers from having any effect if it were above them (i.e., had a higher layer number).
* Arrange your layers in a "tree" layout, with layer 0 as the root. Do not try to enter the same layer from more than one other layer.
* In a layer's keymap, only reference higher-numbered layers. Because layers are processed from the highest-numbered (topmost) active layer down, modifying the state of lower layers can be tricky and error-prone.
### Intermediate Users :id=intermediate-users
Sometimes you need more than one base layer. For example, if you want to switch between QWERTY and Dvorak, switch between layouts for different countries, or switch your layout for different videogames. Your base layers should always be the lowest numbered layers. When you have multiple base layers you should always treat them as mutually exclusive. When one base layer is on the others are off.
### Advanced Users :id=advanced-users
Once you have a good feel for how layers work and what you can do, you can get more creative. The rules listed in the beginner section will help you be successful by avoiding some of the tricker details but they can be constraining, especially for ultra-compact keyboard users. Understanding how layers work will allow you to use them in more advanced ways.
Layers stack on top of each other in numerical order. When determining what a keypress does, QMK scans the layers from the top down, stopping when it reaches the first active layer that is not set to `KC_TRNS`. As a result if you activate a layer that is numerically lower than your current layer, and your current layer (or another layer that is active and higher than your target layer) has something other than `KC_TRNS`, that is the key that will be sent, not the key on the layer you just activated. This is the cause of most people's "why doesn't my layer get switched" problem.
Sometimes, you might want to switch between layers in a macro or as part of a tap dance routine. `layer_on` activates a layer, and `layer_off` deactivates it. More layer-related functions can be found in [action_layer.h](https://github.com/qmk/qmk_firmware/blob/master/tmk_core/common/action_layer.h).
## Functions :id=functions
There are a number of functions (and variables) related to how you can use or manipulate the layers.
|Function |Description |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------|
| `layer_state_set(layer_mask)` | Directly sets the layer state (recommended, do not use unless you know what you are doing). |
| `layer_clear()` | Clears all layers (turns them all off). |
| `layer_move(layer)` | Turns specified layer on, and all other layers off. |
| `layer_on(layer)` | Turns specified layer on, leaves all other layers in existing state. |
| `layer_off(layer)` | Turns specified layer off, leaves all other layers in existing state. |
| `layer_invert(layer)` | Interverts/toggles the state of the specified layer |
| `layer_or(layer_mask)` | Turns on layers based on matching bits between specifed layer and existing layer state. |
| `layer_and(layer_mask)` | Turns on layers based on matching enabled bits between specifed layer and existing layer state. |
| `layer_xor(layer_mask)` | Turns on layers based on non-matching bits between specifed layer and existing layer state. |
| `layer_debug(layer_mask)` | Prints out the current bit mask and highest active layer to debugger console. |
| `default_layer_set(layer_mask)` | Directly sets the default layer state (recommended, do not use unless you know what you are doing). |
| `default_layer_or(layer_mask)` | Turns on layers based on matching bits between specifed layer and existing default layer state. |
| `default_layer_and(layer_mask)` | Turns on layers based on matching enabled bits between specifed layer and existing default layer state. |
| `default_layer_xor(layer_mask)` | Turns on layers based on non-matching bits between specifed layer and existing default layer state. |
| `default_layer_debug(layer_mask)` | Prints out the current bit mask and highest active default layer to debugger console. |
| [`set_single_persistent_default_layer(layer)`](ref_functions.md#setting-the-persistent-default-layer) | Sets the default layer and writes it to persistent memory (EEPROM). |
| [`update_tri_layer(x, y, z)`](ref_functions.md#update_tri_layerx-y-z) | Checks if layers `x` and `y` are both on, and sets `z` based on that (on if both on, otherwise off). |
| [`update_tri_layer_state(state, x, y, z)`](ref_functions.md#update_tri_layer_statestate-x-y-z) | Does the same as `update_tri_layer(x, y, z)`, but from `layer_state_set_*` functions. |
In additional to the functions that you can call, there are a number of callback functions that get called every time the layer changes. This passed the layer state to the function, which can be read or modified.
|Callbacks |Description |
|-----------------------------------------------------|----------------------------------------------------------------------------------------|
| `layer_state_set_kb(layer_state_t state)` | Callback for layer functions, for keyboard. |
| `layer_state_set_user(layer_state_t state)` | Callback for layer functions, for users. |
| `default_layer_state_set_kb(layer_state_t state)` | Callback for default layer functions, for keyboard. Called on keyboard initialization. |
| `default_layer_state_set_user(layer_state_t state)` | Callback for default layer functions, for users. Called on keyboard initialization. |
?> For additional details on how you can use these callbacks, check out the [Layer Change Code](custom_quantum_functions.md#layer-change-code) document.
|Check functions |Description |
|-------------------------------------------|------------------------------------------------------------------------------|
| `layer_state_cmp(cmp_layer_state, layer)` | This checks the `cmp_layer_state` to see if the specific `layer` is enabled. This is meant for use with the layer callbacks. |
| `layer_state_is(layer)` | This checks the layer state to see if the specific `layer` is enabled. (calls `layer_state_cmp` for the global layer state). |
!> There is `IS_LAYER_ON(layer)` as well, however the `layer_state_cmp` function has some additional handling to ensure that on layer 0 that it returns the correct value. Otherwise, if you check to see if layer 0 is on, you may get an incorrect value returned.

View File

@ -74,9 +74,9 @@ SEQ_THREE_KEYS(KC_C, KC_C, KC_C) {
## Strict Key Processing
By default, the Leader Key feature will filter the keycode out of [`Mod-Tap`](mod_tap.md) and [`Layer Tap`](feature_advanced_keycodes.md#switching-and-toggling-layers) functions when checking for the Leader sequences. That means if you're using `LT(3, KC_A)`, it will pick this up as `KC_A` for the sequence, rather than `LT(3, KC_A)`, giving a more expected behavior for newer users.
By default, the Leader Key feature will filter the keycode out of [`Mod-Tap`](mod_tap.md) and [`Layer Tap`](feature_layers.md#switching-and-toggling-layers) functions when checking for the Leader sequences. That means if you're using `LT(3, KC_A)`, it will pick this up as `KC_A` for the sequence, rather than `LT(3, KC_A)`, giving a more expected behavior for newer users.
While, this may be fine for most, if you want to specify the whole keycode (eg, `LT(3, KC_A)` from the example above) in the sequence, you can enable this by added `#define LEADER_KEY_STRICT_KEY_PROCESSING` to your `config.h` file. This well then disable the filtering, and you'll need to specify the whole keycode.
While, this may be fine for most, if you want to specify the whole keycode (eg, `LT(3, KC_A)` from the example above) in the sequence, you can enable this by added `#define LEADER_KEY_STRICT_KEY_PROCESSING` to your `config.h` file. This will then disable the filtering, and you'll need to specify the whole keycode.
## Customization

View File

@ -88,6 +88,46 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
};
```
### Advanced Macros
In addition to the `process_record_user()` function, is the `post_process_record_user()` function. This runs after `process_record` and can be used to do things after a keystroke has been sent. This is useful if you want to have a key pressed before and released after a normal key, for instance.
In this example, we modify most normal keypresses so that `F22` is pressed before the keystroke is normally sent, and release it __only after__ it's been released.
```c
static uint8_t f22_tracker;
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case KC_A ... KC_F21: //notice how it skips over F22
case KC_F23 ... KC_EXSEL: //exsel is the last one before the modifier keys
if (record->event.pressed) {
register_code(KC_F22); //this means to send F22 down
f22_tracker++;
register_code(keycode);
return false;
}
break;
}
return true;
}
void post_process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case KC_A ... KC_F21: //notice how it skips over F22
case KC_F23 ... KC_EXSEL: //exsel is the last one before the modifier keys
if (!record->event.pressed) {
f22_tracker--;
if (!f22_tracker) {
unregister_code(KC_F22); //this means to send F22 up
}
}
break;
}
}
```
### TAP, DOWN and UP
You may want to use keys in your macros that you can't write down, such as `Ctrl` or `Home`.
@ -121,11 +161,11 @@ There's also a couple of mod shortcuts you can use:
* `SS_LCTL(string)`
* `SS_LSFT(string)`
* `SS_LALT(string)`
* `SS_LALT(string)` or `SS_LOPT(string)`
* `SS_LGUI(string)`, `SS_LCMD(string)` or `SS_LWIN(string)`
* `SS_RCTL(string)`
* `SS_RSFT(string)`
* `SS_RALT(string)` or `SS_ALGR(string)`
* `SS_RALT(string)`, `SS_ROPT(string)` or `SS_ALGR(string)`
* `SS_RGUI(string)`, `SS_RCMD(string)` or `SS_RWIN(string)`
These press the respective modifier, send the supplied string and then release the modifier.

View File

@ -266,6 +266,25 @@ To reverse the scroll axes you can put:
into config.h.
### Rotate Mouse Axes :id=rotate-mouse-axes
Transform the output of the device with a clockwise rotation of 90, 180, or 270
degrees.
When compensating for device orientation, rotate the output the same amount in
the opposite direction. E.g. if the normal device orientation is considered to
be North-facing, compensate as follows:
```c
#define PS2_MOUSE_ROTATE 270 /* Compensate for East-facing device orientation. */
```
```c
#define PS2_MOUSE_ROTATE 180 /* Compensate for South-facing device orientation. */
```
```c
#define PS2_MOUSE_ROTATE 90 /* Compensate for West-facing device orientation. */
```
### Debug Settings :id=debug-settings
To debug the mouse, add `debug_mouse = true` or enable via bootmagic.

65
docs/feature_rawhid.md Normal file
View File

@ -0,0 +1,65 @@
# Raw HID
Raw HID allows for bidirectional communication between QMK and the host computer over an HID interface. This has many potential use cases, such as switching keymaps on the fly or changing RGB LED colors and modes.
There are two main components to getting raw HID working with your keyboard.
## Keyboard firmware
The implementation is fairly straightforward for the firmware.
In your `rules.mk` add:
```make
RAW_ENABLE = yes
```
In your `keymap.c` include `"raw_hid.h"` and implement the following:
```C
void raw_hid_receive(uint8_t *data, uint8_t length) {
// Your code goes here. data is the packet received from host.
}
```
The `"raw_hid.h"` header also declares `void raw_hid_send(uint8_t *data, uint8_t length);` which allows sending packets from keyboard to host. As an example, it can also be used for debugging when building your host application by returning all data back to the host.
```C
void raw_hid_receive(uint8_t *data, uint8_t length) {
raw_hid_send(data, length);
}
```
`raw_hid_receive` can receive variable size packets from host with maximum length `RAW_EPSIZE`. `raw_hid_send` on the other hand can send packets to host of exactly `RAW_EPSIZE` length, therefore it should be used with data of length `RAW_EPSIZE`.
Make sure to flash raw enabled firmware before proceeding with working on the host side.
## Host (Windows/macOS/Linux)
This is the more complicated part as it will require some digging.
To connect your host computer to your keyboard with raw HID you need four pieces of information about your keyboard:
1. Vendor ID
2. Product ID
3. Usage Page
4. Usage
The first two can easily be found in your keyboard's `config.h` in the keyboard's main directory under `VENDOR_ID` and `PRODUCT_ID`. **Usage Page** is **`0xFF60`** and **Usage** is **`0x0061`**.
### Building your host
You can build your host using any language that has an available HID implementation library if you don't wish to make your own. The ones we know of for popular languages are:
* Node: [node-hid](https://github.com/node-hid/node-hid).
* C: [hidapi](https://github.com/libusb/hidapi).
* Java: [purejavahidapi](https://github.com/nyholku/purejavahidapi) and [hid4java](https://github.com/gary-rowe/hid4java).
* Python: [pyhidapi](https://pypi.org/project/hid/).
This is not an exhaustive cross-platform list but should get you started. There are no special requirements for using raw HID so any HID library should work.
Now that you have all four pieces of information required to open HID interface to your keyboard. All you need to do is use your library's available functions to open the device with its ID parameters.
Note that Vendor ID and Product ID are not actually required to open the device. They are used only to filter to a specific device out of the many HID devices you have plugged in. Many libraries will give you the option to open the device using Product Name or Manufacturer Name instead, `node-hid` being a prime example. This will create issues for devices with builtin USB Hub or any extra HID interfaces where you will have multiple interfaces with the same name or from the same manufacturer. The Vendor ID together with Product ID create a unique designation to a single interface and will not exhibit this problem. Therefore, even if your library doesn't require you to, it is best to use them to avoid issues.
Unlike Vendor ID and Product ID though, Usage Page and Usage are necessary for successful communication.
It should go without saying that regardless of the library you're using, you should always make sure to close the interface when finished. Depending on the operating system and your particular environment there may be issues connecting to it again afterwards with another client or another instance of the same client if it's not explicitly closed.

View File

@ -396,18 +396,88 @@ The EEPROM for it is currently shared with the RGBLIGHT system (it's generally a
Where `28` is an unused index from `eeconfig.h`.
## Suspended state :id=suspended-state
## Functions :id=functions
To use the suspend feature, add this to your `<keyboard>.c`:
### Direct Operation :id=direct-operation
|Function |Description |
|--------------------------------------------|-------------|
|`rgb_matrix_set_color_all(r, g, b)` |Set all of the LEDs to the given RGB value, where `r`/`g`/`b` are between 0 and 255 (not written to EEPROM) |
|`rgb_matrix_set_color(index, r, g, b)` |Set a single LED to the given RGB value, where `r`/`g`/`b` are between 0 and 255, and `index` is between 0 and `DRIVER_LED_TOTAL` (not written to EEPROM) |
### Disable/Enable Effects :id=disable-enable-effects
|Function |Description |
|--------------------------------------------|-------------|
|`rgb_matrix_toggle()` |Toggle effect range LEDs between on and off |
|`rgb_matrix_toggle_noeeprom()` |Toggle effect range LEDs between on and off (not written to EEPROM) |
|`rgb_matrix_enable()` |Turn effect range LEDs on, based on their previous state |
|`rgb_matrix_enable_noeeprom()` |Turn effect range LEDs on, based on their previous state (not written to EEPROM) |
|`rgb_matrix_disable()` |Turn effect range LEDs off |
|`rgb_matrix_disable_noeeprom()` |Turn effect range LEDs off (not written to EEPROM) |
### Change Effect Mode :id=change-effect-mode
|Function |Description |
|--------------------------------------------|-------------|
|`rgb_matrix_mode(mode)` |Set the mode, if RGB animations are enabled |
|`rgb_matrix_mode_noeeprom(mode)` |Set the mode, if RGB animations are enabled (not written to EEPROM) |
|`rgb_matrix_step()` |Change the mode to the next RGB animation in the list of enabled RGB animations |
|`rgb_matrix_step_reverse()` |Change the mode to the previous RGB animation in the list of enabled RGB animations |
|`rgb_matrix_increase_speed()` |Increases the speed of the animations |
|`rgb_matrix_decrease_speed()` |Decreases the speed of the animations |
### Change Color :id=change-color
|Function |Description |
|--------------------------------------------|-------------|
|`rgb_matrix_increase_hue()` |Increase the hue for effect range LEDs. This wraps around at maximum hue |
|`rgb_matrix_decrease_hue()` |Decrease the hue for effect range LEDs. This wraps around at minimum hue |
|`rgb_matrix_increase_sat()` |Increase the saturation for effect range LEDs. This wraps around at maximum saturation |
|`rgb_matrix_decrease_sat()` |Decrease the saturation for effect range LEDs. This wraps around at minimum saturation |
|`rgb_matrix_increase_val()` |Increase the value for effect range LEDs. This wraps around at maximum value |
|`rgb_matrix_decrease_val()` |Decrease the value for effect range LEDs. This wraps around at minimum value |
|`rgb_matrix_sethsv(h, s, v)` |Set LEDs to the given HSV value where `h`/`s`/`v` are between 0 and 255 |
|`rgb_matrix_sethsv_noeeprom(h, s, v)` |Set LEDs to the given HSV value where `h`/`s`/`v` are between 0 and 255 (not written to EEPROM) |
### Query Current Status :id=query-current-status
|Function |Description |
|-----------------------|-----------------|
|`rgb_matrix_get_mode()` |Get current mode |
|`rgb_matrix_get_hue()` |Get current hue |
|`rgb_matrix_get_sat()` |Get current sat |
|`rgb_matrix_get_val()` |Get current val |
## Callbacks :id=callbacks
### Indicators :id=indicators
If you want to set custom indicators, such as an LED for Caps Lock, or layer indication, you can use the `rgb_matrix_indicators_kb` or `rgb_matrix_indicators_user` function for that:
```c
void rgb_matrix_indicators_kb(void) {
rgb_matrix_set_color(index, red, green, blue);
}
```
### Suspended state :id=suspended-state
To use the suspend feature, make sure that `#define RGB_DISABLE_WHEN_USB_SUSPENDED true` is added to the `config.h` file.
Additionally add this to your `<keyboard>.c`:
```c
void suspend_power_down_kb(void)
{
void suspend_power_down_kb(void) {
rgb_matrix_set_suspend_state(true);
suspend_power_down_user();
}
void suspend_wakeup_init_kb(void) {
rgb_matrix_set_suspend_state(false);
suspend_wakeup_init_user();
}
```
or add this to your `keymap.c`:
```c
void suspend_power_down_user(void) {
rgb_matrix_set_suspend_state(true);
}
void suspend_wakeup_init_kb(void)
{
void suspend_wakeup_init_user(void) {
rgb_matrix_set_suspend_state(false);
}
```

View File

@ -94,6 +94,7 @@ if `RGBLIGHT_EFFECT_xxxx` or `RGBLIGHT_ANIMATIONS` is defined, you also have a n
|`RGBLIGHT_MODE_STATIC_GRADIENT`| 0,1,..,9 |Static gradient |
|`RGBLIGHT_MODE_RGB_TEST` | *None* |RGB Test |
|`RGBLIGHT_MODE_ALTERNATING` | *None* |Alternating |
|`RGBLIGHT_MODE_TWINKLE` | 0,1,2,3,4,5 |Twinkle |
Check out [this video](https://youtube.com/watch?v=VKrpPAHlisY) for a demonstration.
@ -104,7 +105,7 @@ Note: For versions older than 0.6.117, The mode numbers were written directly. I
Use these defines to add or remove animations from the firmware. When you are running low on flash space, it can be helpful to disable animations you are not using.
|Define |Default |Description |
|------------------------------------|-------------|-------------------------------------------------------------------------------------|
|------------------------------------|-------------|-------------------------------------------------------------------------|
|`RGBLIGHT_ANIMATIONS` |*Not defined*|Enable all additional animation modes. |
|`RGBLIGHT_EFFECT_ALTERNATING` |*Not defined*|Enable alternating animation mode. |
|`RGBLIGHT_EFFECT_BREATHING` |*Not defined*|Enable breathing animation mode. |
@ -115,6 +116,7 @@ Use these defines to add or remove animations from the firmware. When you are ru
|`RGBLIGHT_EFFECT_RGB_TEST` |*Not defined*|Enable RGB test animation mode. |
|`RGBLIGHT_EFFECT_SNAKE` |*Not defined*|Enable snake animation mode. |
|`RGBLIGHT_EFFECT_STATIC_GRADIENT` |*Not defined*|Enable static gradient mode. |
|`RGBLIGHT_EFFECT_TWINKLE` |*Not defined*|Enable twinkle animation mode. |
### Effect and Animation Settings
@ -131,6 +133,8 @@ The following options are used to tweak the various animations:
|`RGBLIGHT_EFFECT_KNIGHT_OFFSET` |`0` |The number of LEDs to start the "Knight" animation from the start of the strip by |
|`RGBLIGHT_RAINBOW_SWIRL_RANGE` |`255` |Range adjustment for the rainbow swirl effect to get different swirls |
|`RGBLIGHT_EFFECT_SNAKE_LENGTH` |`4` |The number of LEDs to light up for the "Snake" animation |
|`RGBLIGHT_EFFECT_TWINKLE_LIFE` |`75` |Adjusts how quickly each LED brightens and dims when twinkling (in animation steps) |
|`RGBLIGHT_EFFECT_TWINKLE_PROBABILITY`|`1/127` |Adjusts how likely each LED is to twinkle (on each animation step) |
### Example Usage to Reduce Memory Footprint
1. Remove `RGBLIGHT_ANIMATIONS` from `config.h`.
@ -168,6 +172,9 @@ const uint8_t RGBLED_SNAKE_INTERVALS[] PROGMEM = {100, 50, 20};
// How long (in milliseconds) to wait between animation steps for each of the "Knight" animations
const uint8_t RGBLED_KNIGHT_INTERVALS[] PROGMEM = {127, 63, 31};
// How long (in milliseconds) to wait between animation steps for each of the "Twinkle" animations
const uint8_t RGBLED_TWINKLE_INTERVALS[] PROGMEM = {50, 25, 10};
// These control which hues are selected for each of the "Static gradient" modes
const uint8_t RGBLED_GRADIENT_RANGES[] PROGMEM = {255, 170, 127, 85, 64};
```
@ -177,6 +184,10 @@ const uint8_t RGBLED_GRADIENT_RANGES[] PROGMEM = {255, 170, 127, 85, 64};
By including `#define RGBLIGHT_LAYERS` in your `config.h` file you can enable lighting layers. These make
it easy to use your underglow LEDs as status indicators to show which keyboard layer is currently active, or the state of caps lock, all without disrupting any animations. [Here's a video](https://youtu.be/uLGE1epbmdY) showing an example of what you can do.
### Defining Lighting Layers :id=defining-lighting-layers
By default, 8 layers are possible. This can be expanded to as many as 32 by overriding the definition of `RGBLIGHT_MAX_LAYERS` in `config.h` (e.g. `#define RGBLIGHT_MAX_LAYERS 32`). Please note, if you use a split keyboard, you will need to flash both sides of the split after changing this. Also, increasing the maximum will increase the firmware size, and will slow sync on split keyboards.
To define a layer, we modify `keymap.c` to list out LED ranges and the colors we want to overlay on them using an array of `rgblight_segment_t` using the `RGBLIGHT_LAYER_SEGMENTS` macro. We can define multiple layers and enable/disable them independently:
```c
@ -191,7 +202,7 @@ const rgblight_segment_t PROGMEM my_layer1_layer[] = RGBLIGHT_LAYER_SEGMENTS(
);
// Light LEDs 11 & 12 in purple when keyboard layer 2 is active
const rgblight_segment_t PROGMEM my_layer2_layer[] = RGBLIGHT_LAYER_SEGMENTS(
{11, 2, HSV_PURPLE},
{11, 2, HSV_PURPLE}
);
// etc..
```
@ -211,8 +222,12 @@ void keyboard_post_init_user(void) {
rgblight_layers = my_rgb_layers;
}
```
Note: For split keyboards with two controllers, both sides need to be flashed when updating the contents of rgblight_layers.
Finally, we enable and disable the lighting layers whenever the state of the keyboard changes:
### Enabling and disabling lighting layers :id=enabling-lighting-layers
Everything above just configured the definition of each lighting layer.
We can now enable and disable the lighting layers whenever the state of the keyboard changes:
```c
layer_state_t layer_state_set_user(layer_state_t state) {
@ -228,6 +243,41 @@ bool led_update_user(led_t led_state) {
}
```
### Lighting layer blink :id=lighting-layer-blink
By including `#define RGBLIGHT_LAYER_BLINK` in your `config.h` file you can turn a lighting
layer on for a specified duration. Once the specified number of milliseconds has elapsed
the layer will be turned off. This is useful, e.g., if you want to acknowledge some
action (e.g. toggling some setting):
```c
const rgblight_segment_t PROGMEM _yes_layer[] = RGBLIGHT_LAYER_SEGMENTS( {9, 6, HSV_GREEN} );
const rgblight_segment_t PROGMEM _no_layer[] = RGBLIGHT_LAYER_SEGMENTS( {9, 6, HSV_RED} );
const rgblight_segment_t* const PROGMEM _rgb_layers[] =
RGBLIGHT_LAYERS_LIST( _yes_layer, _no_layer );
void keyboard_post_init_user(void) {
rgblight_layers = _rgb_layers;
}
// Note we user post_process_record_user because we want the state
// after the flag has been flipped...
void post_process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case DEBUG:
rgblight_blink_layer(debug_enable ? 0 : 1, 500);
break;
case NK_TOGG:
case NK_ON:
case NK_OFF:
rgblight_blink_layer(keymap_config.nkro ? 0 : 1, 500);
break;
}
}
```
## Functions
If you need to change your RGB lighting in code, for example in a macro to change the color whenever you switch layers, QMK provides a set of functions to assist you. See [`rgblight.h`](https://github.com/qmk/qmk_firmware/blob/master/quantum/rgblight.h) for the full list, but the most commonly used functions include:

View File

@ -28,3 +28,4 @@ Note that the array indices are reversed same as the matrix and the values are o
|`SH_MOFF` |Momentarily turns off swap. |
|`SH_TG` |Toggles swap on and off with every key press. |
|`SH_TT` |Toggles with a tap; momentary when held. |
|`SH_OS` |One shot swap hands: toggles while pressed or until next key press. |

View File

@ -90,13 +90,15 @@ Unicode input in QMK works by inputting a sequence of characters to the OS, sort
The following input modes are available:
* **`UC_OSX`**: macOS built-in Unicode hex input. Supports code points up to `0xFFFF` (`0x10FFFF` with Unicode Map).
* **`UC_MAC`**: macOS built-in Unicode hex input. Supports code points up to `0xFFFF` (`0x10FFFF` with Unicode Map).
To enable, go to _System Preferences > Keyboard > Input Sources_, add _Unicode Hex Input_ to the list (it's under _Other_), then activate it from the input dropdown in the Menu Bar.
By default, this mode uses the left Option key (`KC_LALT`) for Unicode input, but this can be changed by defining [`UNICODE_KEY_OSX`](#input-key-configuration) with another keycode.
By default, this mode uses the left Option key (`KC_LALT`) for Unicode input, but this can be changed by defining [`UNICODE_KEY_MAC`](#input-key-configuration) with another keycode.
!> Using the _Unicode Hex Input_ input source may disable some Option based shortcuts, such as Option + Left Arrow and Option + Right Arrow.
!> `UC_OSX` is a deprecated alias of `UC_MAC` that will be removed in a future version of QMK.
* **`UC_LNX`**: Linux built-in IBus Unicode input. Supports code points up to `0x10FFFF` (all possible code points).
Enabled by default and works almost anywhere on IBus-enabled distros. Without IBus, this mode works under GTK apps, but rarely anywhere else.
@ -124,7 +126,7 @@ You can switch the input mode at any time by using one of the following keycodes
|----------------------|---------|------------|--------------------------------------------------------------|
|`UNICODE_MODE_FORWARD`|`UC_MOD` |Next in list|[Cycle](#input-mode-cycling) through selected modes |
|`UNICODE_MODE_REVERSE`|`UC_RMOD`|Prev in list|[Cycle](#input-mode-cycling) through selected modes in reverse|
|`UNICODE_MODE_OSX` |`UC_M_OS`|`UC_OSX` |Switch to macOS input |
|`UNICODE_MODE_MAC` |`UC_M_MA`|`UC_MAC` |Switch to macOS input |
|`UNICODE_MODE_LNX` |`UC_M_LN`|`UC_LNX` |Switch to Linux input |
|`UNICODE_MODE_WIN` |`UC_M_WI`|`UC_WIN` |Switch to Windows input |
|`UNICODE_MODE_BSD` |`UC_M_BS`|`UC_BSD` |Switch to BSD input (not implemented) |
@ -145,9 +147,9 @@ If you have the [Audio feature](feature_audio.md) enabled on the board, you can
For instance, you can add these definitions to your `config.h` file:
```c
#define UNICODE_SONG_OSX COIN_SOUND
#define UNICODE_SONG_MAC AUDIO_ON_SOUND
#define UNICODE_SONG_LNX UNICODE_LINUX
#define UNICODE_SONG_BSD MARIO_GAMEOVER
#define UNICODE_SONG_BSD TERMINAL_SOUND
#define UNICODE_SONG_WIN UNICODE_WINDOWS
#define UNICODE_SONG_WINC UNICODE_WINDOWS
```
@ -171,7 +173,7 @@ You can customize the keys used to trigger Unicode input for macOS, Linux and Wi
|Define |Type |Default |Example |
|------------------|----------|------------------|-------------------------------------------|
|`UNICODE_KEY_OSX` |`uint8_t` |`KC_LALT` |`#define UNICODE_KEY_OSX KC_RALT` |
|`UNICODE_KEY_MAC` |`uint8_t` |`KC_LALT` |`#define UNICODE_KEY_MAC KC_RALT` |
|`UNICODE_KEY_LNX` |`uint16_t`|`LCTL(LSFT(KC_U))`|`#define UNICODE_KEY_LNX LCTL(LSFT(KC_E))`|
|`UNICODE_KEY_WINC`|`uint8_t` |`KC_RALT` |`#define UNICODE_KEY_WINC KC_RGUI` |
@ -180,7 +182,7 @@ You can customize the keys used to trigger Unicode input for macOS, Linux and Wi
You can choose which input modes are available for cycling through. By default, this is disabled. If you want to enable it, limiting it to just the modes you use makes sense. Note that the values in the list are comma-delimited.
```c
#define UNICODE_SELECTED_MODES UC_OSX, UC_LNX, UC_WIN, UC_WINC
#define UNICODE_SELECTED_MODES UC_MAC, UC_LNX, UC_WIN, UC_WINC
```
You can cycle through the selected modes by using the `UC_MOD`/`UC_RMOD` keycodes, or by calling `cycle_unicode_input_mode(offset)` in your code (`offset` is how many modes to move forward by, so +1 corresponds to `UC_MOD`).

25
docs/feature_wpm.md Normal file
View File

@ -0,0 +1,25 @@
# Word Per Minute (WPM) Calculcation
The WPM feature uses time between keystrokes to compute a rolling average words
per minute rate and makes this available for various uses.
Enable the WPM system by adding this to your `rules.mk`:
WPM_ENABLE = yes
For split keyboards using soft serial, the computed WPM
score will be available on the master AND slave half.
## Public Functions
`uint8_t get_current_wpm(void);`
This function returns the current WPM as an unsigned integer.
## Customized keys for WPM calc
By default, the WPM score only includes letters, numbers, space and some
punctuation. If you want to change the set of characters considered as part of
the WPM calculation, you can implement `wpm_keycode_user(uint16_t keycode)`
and return true for any characters you would like included in the calculation,
or false to not count that particular keycode.

View File

@ -26,7 +26,6 @@ Compatible flashers:
* [QMK Toolbox](https://github.com/qmk/qmk_toolbox/releases) (recommended GUI)
* [dfu-programmer](https://github.com/dfu-programmer/dfu-programmer) / `:dfu` in QMK (recommended command line)
* [Atmel's Flip](http://www.microchip.com/developmenttools/productdetails.aspx?partno=flip) (not recommended)
Flashing sequence:

View File

@ -101,7 +101,8 @@
* [Guide des claviers soudés à la main](fr-fr/hand_wire.md)
* [Guide de flash de lISP](fr-fr/isp_flashing_guide.md)
* [Guide du débogage ARM](fr-fr/arm_debugging.md)
* [Drivers i2c](fr-fr/i2c_driver.md)
* [Drivers I2C](fr-fr/i2c_driver.md)
* [Drivers SPI](fr-fr/spi_driver.md)
* [Contrôles des GPIO](fr-fr/internals_gpio_control.md)
* [Conversion en Proton C](fr-fr/proton_c_conversion.md)

View File

@ -155,11 +155,3 @@ Pour le moment, l'origine du problème n'est pas comprise, mais certaines option
https://github.com/tmk/tmk_keyboard/issues/266
https://geekhack.org/index.php?topic=41989.msg1967778#msg1967778
## FLIP ne marche pas
### `AtLibUsbDfu.dll` Not Found
Supprimez le pilote actuel et réinstallez celui donné par FLIP dans le gestionnaire de périphériques.
http://imgur.com/a/bnwzy

View File

@ -26,7 +26,6 @@ Méthodes de flash compatibles :
* [QMK Toolbox](https://github.com/qmk/qmk_toolbox/releases) (interface graphique recommandé)
* [dfu-programmer](https://github.com/dfu-programmer/dfu-programmer) / `:dfu` avec QMK (outil en ligne de commande recommandé)
* [Atmel's Flip](http://www.microchip.com/developmenttools/productdetails.aspx?partno=flip) (non recommandé)
Ordre des actions:

View File

@ -20,7 +20,6 @@ The "easy" way to flash the firmware is using a tool from your host OS:
* [QMK Toolbox](https://github.com/qmk/qmk_toolbox) (recommended)
* [Teensy Loader](https://www.pjrc.com/teensy/loader.html)
* [Atmel FLIP](http://www.atmel.com/tools/flip.aspx)
If you want to program via the command line you can uncomment the ['modifyvm'] lines in the Vagrantfile to enable the USB passthrough into Linux and then program using the command line tools like dfu-util/dfu-programmer or you can install the Teensy CLI version.

View File

@ -61,10 +61,76 @@ This file is used by the [QMK API](https://github.com/qmk/qmk_api). It contains
All projects need to have a `config.h` file that sets things like the matrix size, product name, USB VID/PID, description and other settings. In general, use this file to set essential information and defaults for your keyboard that will always work.
The `config.h` files can also be placed in sub-folders, and the order in which they are read is as follows:
* `keyboards/top_folder/config.h`
* `keyboards/top_folder/sub_1/config.h`
* `keyboards/top_folder/sub_1/sub_2/config.h`
* `keyboards/top_folder/sub_1/sub_2/sub_3/config.h`
* `keyboards/top_folder/sub_1/sub_2/sub_3/sub_4/config.h`
* `users/a_user_folder/config.h`
* `keyboards/top_folder/keymaps/a_keymap/config.h`
* `keyboards/top_folder/sub_1/sub_2/sub_3/sub_4/post_config.h`
* `keyboards/top_folder/sub_1/sub_2/sub_3/post_config.h`
* `keyboards/top_folder/sub_1/sub_2/post_config.h`
* `keyboards/top_folder/sub_1/post_config.h`
* `keyboards/top_folder/post_config.h`
The `post_config.h` file can be used for additional post-processing, depending on what is specified in the `config.h` file. For example, if you define the `IOS_DEVICE_ENABLE` macro in your keymap-level `config.h` file as follows, you can configure more detailed settings accordingly in the `post_config.h` file:
* `keyboards/top_folder/keymaps/a_keymap/config.h`
```c
#define IOS_DEVICE_ENABLE
```
* `keyboards/top_folder/post_config.h`
```c
#ifndef IOS_DEVICE_ENABLE
// USB_MAX_POWER_CONSUMPTION value for this keyboard
#define USB_MAX_POWER_CONSUMPTION 400
#else
// fix iPhone and iPad power adapter issue
// iOS device need lessthan 100
#define USB_MAX_POWER_CONSUMPTION 100
#endif
#ifdef RGBLIGHT_ENABLE
#ifndef IOS_DEVICE_ENABLE
#define RGBLIGHT_LIMIT_VAL 200
#define RGBLIGHT_VAL_STEP 17
#else
#define RGBLIGHT_LIMIT_VAL 35
#define RGBLIGHT_VAL_STEP 4
#endif
#ifndef RGBLIGHT_HUE_STEP
#define RGBLIGHT_HUE_STEP 10
#endif
#ifndef RGBLIGHT_SAT_STEP
#define RGBLIGHT_SAT_STEP 17
#endif
#endif
```
?> If you define options using `post_config.h` as in the above example, you should not define the same options in the keyboard- or user-level `config.h`.
### `rules.mk`
The presence of this file means that the folder is a keyboard target and can be used in `make` commands. This is where you setup the build environment for your keyboard and configure the default set of features.
The `rules.mk` file can also be placed in a sub-folder, and its reading order is as follows:
* `keyboards/top_folder/rules.mk`
* `keyboards/top_folder/sub_1/rules.mk`
* `keyboards/top_folder/sub_1/sub_2/rules.mk`
* `keyboards/top_folder/sub_1/sub_2/sub_3/rules.mk`
* `keyboards/top_folder/sub_1/sub_2/sub_3/sub_4/rules.mk`
* `keyboards/top_folder/keymaps/a_keymap/rules.mk`
* `users/a_user_folder/rules.mk`
* `common_features.mk`
Many of the settings written in the `rules.mk` file are interpreted by `common_features.mk`, which sets the necessary source files and compiler options.
?> See `build_keyboard.mk` and `common_features.mk` for more details.
### `<keyboard_name.c>`
This is where you will write custom code for your keyboard. Typically you will write code to initialize and interface with the hardware in your keyboard. If your keyboard consists of only a key matrix with no LEDs, speakers, or other auxiliary hardware this file can be blank.

View File

@ -114,6 +114,7 @@
* [מדריך לצריבת ISP](he-il/isp_flashing_guide.md)
* [מדריך לדיבאגינג ARM](he-il/arm_debugging.md)
* [מנהל התקן I2C](he-il/i2c_driver.md)
* [מנהל התקן SPI](he-il/spi_driver.md)
* [בקרת GPIO](he-il/internals_gpio_control.md)
* [המרת Proton C](he-il/proton_c_conversion.md)

View File

@ -32,7 +32,7 @@
// Moved pages
'/adding_a_keyboard_to_qmk': '/hardware_keyboard_guidelines',
'/build_environment_setup': '/getting_started_build_tools',
'/build_environment_setup': '/newbs_getting_started',
'/cli_dev_configuration': '/cli_configuration',
'/dynamic_macros': '/feature_dynamic_macros',
'/feature_common_shortcuts': '/feature_advanced_keycodes',
@ -45,6 +45,7 @@
'/tap_dance': '/feature_tap_dance',
'/unicode': '/feature_unicode',
'/python_development': '/cli_development',
'/getting_started_build_tools':'/newbs_getting_started',
},
basePath: '/',
name: 'QMK Firmware',

View File

@ -16,6 +16,7 @@ The following functions can provide basic control of GPIOs and are found in `qua
| `writePinLow(pin)` | Set pin level as low, assuming it is an output | `PORTB &= ~(1<<2)` | `palClearLine(pin)` |
| `writePin(pin, level)` | Set pin level, assuming it is an output | `(level) ? PORTB \|= (1<<2) : PORTB &= ~(1<<2)` | `(level) ? palSetLine(pin) : palClearLine(pin)` |
| `readPin(pin)` | Returns the level of the pin | `_SFR_IO8(pin >> 4) & _BV(pin & 0xF)` | `palReadLine(pin)` |
| `togglePin(pin)` | Invert pin level, assuming it is an output | `PORTB ^= (1<<2)` | `palToggleLine(pin)` |
## Advanced Settings :id=advanced-settings

View File

@ -115,12 +115,18 @@ The simplest and quickest way to get things back to normal is to flash only a bo
You can find the stock bootloaders in the [`util/` folder](https://github.com/qmk/qmk_firmware/tree/master/util). Be sure to flash the correct bootloader for your chip:
* [`atmega32u4`](https://github.com/qmk/qmk_firmware/blob/master/util/bootloader_atmega32u4_1_0_0.hex) - Most keyboards, Planck Rev 1-5, Preonic Rev 1-2
* [`Pro Micro`](https://github.com/sparkfun/Arduino_Boards/blob/master/sparkfun/avr/bootloaders/caterina/Caterina-promicro16.hex) - The default bootloader for Pro Micro controllers
* [`at90usb1286`](https://github.com/qmk/qmk_firmware/blob/master/util/bootloader_at90usb128x_1_0_1.hex) - Planck Light Rev 1
* [`atmega32a`](https://github.com/qmk/qmk_firmware/blob/master/util/bootloader_atmega32a_1_0_0.hex) - jj40, and other V-USB/ps2avrGB keyboards
* **Atmel DFU**
* [ATmega16U4](https://github.com/qmk/qmk_firmware/blob/master/util/bootloader_atmega16u4_1.0.1.hex)
* [ATmega32U4](https://github.com/qmk/qmk_firmware/blob/master/util/bootloader_atmega32u4_1.0.0.hex)
* [AT90USB64](https://github.com/qmk/qmk_firmware/blob/master/util/bootloader_at90usb64_1.0.0.hex)
* [AT90USB128](https://github.com/qmk/qmk_firmware/blob/master/util/bootloader_at90usb128_1.0.1.hex)
* **Caterina**
* [Pro Micro (5V/16MHz)](https://github.com/sparkfun/Arduino_Boards/blob/master/sparkfun/avr/bootloaders/caterina/Caterina-promicro16.hex)
* [Pro Micro (3.3V/8MHz)](https://github.com/sparkfun/Arduino_Boards/blob/master/sparkfun/avr/bootloaders/caterina/Caterina-promicro8.hex)
* **BootloadHID (PS2AVRGB)**
* [ATmega32A](https://github.com/qmk/qmk_firmware/blob/master/util/bootloader_ps2avrgb_bootloadhid_1.0.1.hex)
If you're not sure what your board uses, look in the `rules.mk` file for the keyboard in QMK. The `MCU =` line will have the value you need. It may differ between different versions of the board.
If you're not sure what your board uses, look in the `rules.mk` file for the keyboard in QMK. The `MCU` and `BOOTLOADER` lines will have the value you need. It may differ between different versions of the board.
### Production Techniques

View File

@ -1,8 +1,8 @@
# Quantum Mechanical Keyboard Firmware
<!---
original document: eae21eed7:docs/README.md
git diff eae21eed7 HEAD -- docs/README.md | cat
original document: 0.8.58:docs/README.md
git diff 0.8.58 HEAD -- docs/README.md | cat
-->
[![現在のバージョン](https://img.shields.io/github/tag/qmk/qmk_firmware.svg)](https://github.com/qmk/qmk_firmware/tags)
@ -12,26 +12,37 @@
[![GitHub 貢献者](https://img.shields.io/github/contributors/qmk/qmk_firmware.svg)](https://github.com/qmk/qmk_firmware/pulse/monthly)
[![GitHub フォーク](https://img.shields.io/github/forks/qmk/qmk_firmware.svg?style=social&label=Fork)](https://github.com/qmk/qmk_firmware/)
## QMK ファームウェアとは何か?
## QMK ファームウェアとは何でしょうか?
QMK (*Quantum Mechanical Keyboard*)は QMK ファームウェア、QMK ツールボックス、qmk.fm およびそれらのドキュメントを保守するオープンソースコミュニティです。QMK ファームウェアは[tmk\_keyboard](http://github.com/tmk/tmk_keyboard) を元にしたキーボードファームウェアで、Atmel AVR コントローラ、より具体的には [OLKB 製品](http://olkb.com)、[ErgoDox EZ](http://www.ergodox-ez.com) キーボードおよび [Clueboard 製品](http://clueboard.co/) のための幾つかの便利な機能を持ちます。また、ChibiOS を使って ARM チップに移植されています。これを使ってあなたの作った手配線のキーボードあるいはカスタムキーボード PCB で作ったキーボードを動かすことができます。
QMK (*Quantum Mechanical Keyboard*)は、コンピュータ入力デバイスの開発を中心としたオープンソースコミュニティです。コミュニティには、キーボード、マウス、MIDI デバイスなど、全ての種類の入力デバイスが含まれます。協力者の中心グループは、[QMK ファームウェア](https://github.com/qmk/qmk_firmware)、[QMK Configurator](https://config.qmk.fm)、[QMK ツールボックス](https://github.com/qmk/qmk_toolbox)、[qmk.fm](https://qmk.fm)、そして、このドキュメントを、あなたのようなコミュニティメンバーの助けを借りて保守しています。
## 入手方法
## 始めましょう
QMK のキーマップ、キーボード、機能に貢献をする予定がある場合、最も簡単なのは、[Github を介してリポジトリをフォークし](https://github.com/qmk/qmk_firmware#fork-destination-box)、リポジトリをあなたの開発環境にクローンして変更を加え、それらをプッシュし、[プルリクエスト](https://github.com/qmk/qmk_firmware/pulls)を開くことです。
QMK は初めてですか始めるには2つの方法があります:
それ以外の場合は、`git clone https://github.com/qmk/qmk_firmware` を介して直接クローンすることができます。zip または tar ファイルをダウンロードしないでください。コンパイルするためのサブモジュールをダウンロードするために git リポジトリが必要です。
* 基本: [QMK Configurator](https://config.qmk.fm)
* ドロップダウンからあなたのキーボードを選択し、キーボードをプログラムします。
* 見ることができる [紹介ビデオ](https://www.youtube.com/watch?v=-imgglzDMdY) があります。
* 読むことができる概要 [ドキュメント](ja/newbs_building_firmware_configurator.md) があります。
* 発展: [ソースを使用します](ja/newbs.md)
* より強力ですが、使うのはより困難です。
## コンパイル方法
## 自分用にアレンジします
コンパイルをする前に、AVR または ARM 開発のための[環境をインストール](ja/getting_started_build_tools.md)する必要があります。それが完了したら、`make` コマンドを使用して、以下の表記でキーボードとキーマップをビルドします。
QMK には、探求すべき多くの[機能](ja/features.md)と、深く知るためのリファレンスドキュメントがたくさんあります。ほとんどの機能は[キーマップ](ja/keymap.md)を変更し、[キーコード](ja/keycodes.md)を変更することで活用されます。
make planck/rev4:default
## 手助けが必要ですか?
これは、`planck` の `rev4` リビジョンを `default` キーマップでビルドします。全てのキーボードにリビジョン(サブプロジェクトまたはフォルダとも呼ばれます)があるわけではありません。その場合は省略されます:
[サポートページ](ja/support.md) をチェックして、QMK の使い方について手助けを得る方法を確認してください。
make preonic:default
## 貢献する
## カスタマイズ方法
QMK コミュニティに貢献する方法はたくさんあります。始める最も簡単な方法は、それを使って友人に QMK という単語を広めることです。
QMK には、探求すべき多くの[機能](ja/features.md)と、深堀りするための[リファレンス ドキュメント](http://docs.qmk.fm)がたくさんあります。ほとんどの機能は[キーマップ](ja/keymap.md)を変更し、[キーコード](ja/keycodes.md)を変更することで活用されます。
* フォーラムやチャットルームで人々を支援します:
* [/r/olkb](https://www.reddit.com/r/olkb/)
* [Discord サーバ](https://discord.gg/Uq7gcHh)
* 下にある「Edit This Page」をクリックしてドキュメントに貢献します
* [ドキュメントをあなたの言語に翻訳します](ja/translating.md)
* [バグを報告します](https://github.com/qmk/qmk_firmware/issues/new/choose)
* [プルリクエストを開きます](ja/contributing.md)

View File

@ -1,129 +1,162 @@
* [完全な初心者のガイド](ja/newbs.md)
* [はじめに](ja/newbs_getting_started.md)
* チュートリアル
* [入門](ja/newbs.md)
* [セットアップ](ja/newbs_getting_started.md)
* [初めてのファームウェアの構築](ja/newbs_building_firmware.md)
* [ファームウェアのフラッシュ](ja/newbs_flashing.md)
* [テストとデバッグ](ja/newbs_testing_debugging.md)
* [QMK における Git 運用作法](ja/newbs_git_best_practices.md)
* [あなたのフォークの master ブランチ](ja/newbs_git_using_your_master_branch.md)
* [マージの競合の解決](ja/newbs_git_resolving_merge_conflicts.md)
* [同期のとれていない git ブランチの再同期](ja/newbs_git_resynchronize_a_branch.md)
* [学習リソース](ja/newbs_learn_more_resources.md)
* [手助けを得る/サポート](ja/support.md)
* [他のリソース](ja/newbs_learn_more_resources.md)
* [QMKの基本](ja/README.md)
* [QMK の導入](ja/getting_started_introduction.md)
* [QMK CLI](ja/cli.md)
* [QMK CLI 設定](ja/cli_configuration.md)
* [QMK への貢献](ja/contributing.md)
* [Github の使い方](ja/getting_started_github.md)
* [ヘルプ](ja/getting_started_getting_help.md)
* [破壊的な変更](ja/breaking_changes.md)
* [プルリクエストにフラグが付けられた](ja/breaking_changes_instructions.md)
* [2019年8月30日](ja/ChangeLog/20190830.md)
* [FAQ](ja/faq.md)
* FAQ
* [一般的な FAQ](ja/faq_general.md)
* [QMK のビルド/コンパイル](ja/faq_build.md)
* [QMK のデバッグ/トラブルシューティング](ja/faq_debug.md)
* [キーマップ](ja/faq_keymap.md)
* [Zadig を使ったドライバのインストール](ja/driver_installation_zadig.md)
* 詳細なガイド
* [ビルドツールのインストール](ja/getting_started_build_tools.md)
* [Vagrant のガイド](ja/getting_started_vagrant.md)
* [ビルド/コンパイルの説明](ja/getting_started_make_guide.md)
* [ファームウェアのフラッシュ](ja/flashing.md)
* [機能のカスタマイズ](ja/custom_quantum_functions.md)
* [キーマップの概要](ja/keymap.md)
* [ハードウェア](ja/hardware.md)
* [互換性のあるマイクロコントローラ](ja/compatible_microcontrollers.md)
* [AVR プロセッサ](ja/hardware_avr.md)
* [ドライバ](ja/hardware_drivers.md)
* リファレンス
* [キーボード ガイドライン](ja/hardware_keyboard_guidelines.md)
* [設定オプション](ja/config_options.md)
* [キーコード](ja/keycodes.md)
* [コーディング規約 - C](ja/coding_conventions_c.md)
* [コーディング規約 - Python](ja/coding_conventions_python.md)
* [ドキュメント ベストプラクティス](ja/documentation_best_practices.md)
* [ドキュメント テンプレート](ja/documentation_templates.md)
* [キーマップ FAQ](ja/faq_keymap.md)
* [用語](ja/reference_glossary.md)
* [ユニットテスト](ja/unit_testing.md)
* [便利な関数](ja/ref_functions.md)
* [Configurator サポート](ja/reference_configurator_support.md)
* [info.json 形式](ja/reference_info_json.md)
* [Python CLI 開発](ja/cli_development.md)
* [機能](ja/features.md)
* [基本的なキーコード](ja/keycodes_basic.md)
* [US ANSI シフトキー](ja/keycodes_us_ansi_shifted.md)
* [Quantum キーコード](ja/quantum_keycodes.md)
* [Advanced キーコード](ja/feature_advanced_keycodes.md)
* [オーディオ](ja/feature_audio.md)
* [自動シフト](ja/feature_auto_shift.md)
* [バックライト](ja/feature_backlight.md)
* [ブルートゥース](ja/feature_bluetooth.md)
* [ブートマジック](ja/feature_bootmagic.md)
* [コンボ](ja/feature_combo.md)
* [コマンド](ja/feature_command.md)
* [デバウンス API](ja/feature_debounce_type.md)
* [DIP スイッチ](ja/feature_dip_switch.md)
* [動的マクロ](ja/feature_dynamic_macros.md)
* [エンコーダ](ja/feature_encoders.md)
* [グレイブ エスケープ](ja/feature_grave_esc.md)
* [触覚フィードバック](ja/feature_haptic_feedback.md)
* [HD44780 LCD コントローラ](ja/feature_hd44780.md)
* [キーロック](ja/feature_key_lock.md)
* [レイアウト](ja/feature_layouts.md)
* [リーダー キー](ja/feature_leader_key.md)
* [LED マトリクス](ja/feature_led_matrix.md)
* [マクロ](ja/feature_macros.md)
* [マウスキー](ja/feature_mouse_keys.md)
* [OLED ドライバ](ja/feature_oled_driver.md)
* [One Shot Keys](ja/one_shot_keys.md)
* [ポインティング デバイス](ja/feature_pointing_device.md)
* [PS/2 マウス](ja/feature_ps2_mouse.md)
* [RGB ライト](ja/feature_rgblight.md)
* [RGB マトリクス](ja/feature_rgb_matrix.md)
* [Space Cadet](ja/feature_space_cadet.md)
* [分割キーボード](ja/feature_split_keyboard.md)
* [Stenography](ja/feature_stenography.md)
* [Swap Hands](ja/feature_swap_hands.md)
* [タップ ダンス](ja/feature_tap_dance.md)
* [ターミナル](ja/feature_terminal.md)
* [感熱式プリンタ](ja/feature_thermal_printer.md)
* [ユニコード](ja/feature_unicode.md)
* [ユーザスペース](ja/feature_userspace.md)
* [Velocikey](ja/feature_velocikey.md)
* Configurator
* [概要](ja/newbs_building_firmware_configurator.md)
* [ステップ・バイ・ステップ](ja/configurator_step_by_step.md)
* [トラブルシューティング](ja/configurator_troubleshooting.md)
* QMK API
* [概要](ja/api_overview.md)
* [API ドキュメント](ja/api_docs.md)
* [キーボードサポート](ja/reference_configurator_support.md)
* メーカーおよびモッダーのために
* CLI
* [概要](ja/cli.md)
* [設定](ja/cli_configuration.md)
* [コマンド](ja/cli_commands.md)
* QMK を使う
* ガイド
* [機能のカスタマイズ](ja/custom_quantum_functions.md)
* [Zadig を使ったドライバのインストール](ja/driver_installation_zadig.md)
* [キーマップの概要](ja/keymap.md)
* [Vagrant のガイド](ja/getting_started_vagrant.md)
* 書き込み
* [書き込み](ja/flashing.md)
* [ATmega32A の書き込み (ps2avrgb)](ja/flashing_bootloadhid.md)
* IDE
* [Eclipse で QMK を使用](ja/other_eclipse.md)
* [VSCode で QMK を使用](ja/other_vscode.md)
* Git のベストプラクティス
* [入門](ja/newbs_git_best_practices.md)
* [フォーク](ja/newbs_git_using_your_master_branch.md)
* [マージの競合の解決](ja/newbs_git_resolving_merge_conflicts.md)
* [ブランチの修正](ja/newbs_git_resynchronize_a_branch.md)
* キーボードを作る
* [Hand Wiring ガイド](ja/hand_wire.md)
* [ISP 書き込みガイド](ja/isp_flashing_guide.md)
* 単純なキーコード
* [完全なリスト](ja/keycodes.md)
* [基本的なキーコード](ja/keycodes_basic.md)
* [修飾キー](ja/feature_advanced_keycodes.md)
* [Quantum キーコード](ja/quantum_keycodes.md)
* 高度なキーコード
* [コマンド](ja/feature_command.md)
* [動的マクロ](ja/feature_dynamic_macros.md)
* [グレイブ エスケープ](ja/feature_grave_esc.md)
* [リーダーキー](ja/feature_leader_key.md)
* [モッドタップ](ja/mod_tap.md)
* [マクロ](ja/feature_macros.md)
* [マウスキー](ja/feature_mouse_keys.md)
* [Space Cadet Shift](ja/feature_space_cadet.md)
* [US ANSI シフトキー](ja/keycodes_us_ansi_shifted.md)
* ソフトウェア機能
* [自動シフト](ja/feature_auto_shift.md)
* [コンボ](ja/feature_combo.md)
* [デバウンス API](ja/feature_debounce_type.md)
* [キーロック](ja/feature_key_lock.md)
* [レイヤー](ja/feature_layers.md)
* [One Shot Keys](ja/one_shot_keys.md)
* [ポインティング デバイス](ja/feature_pointing_device.md)
* [Swap Hands](ja/feature_swap_hands.md)
* [タップダンス](ja/feature_tap_dance.md)
* [タップホールド設定](ja/tap_hold.md)
* [ターミナル](ja/feature_terminal.md)
* [ユニコード](ja/feature_unicode.md)
* [ユーザスペース](ja/feature_userspace.md)
* [WPM 計算](ja/feature_wpm.md)
* ハードウェア機能
* 表示
* [HD44780 LCD コントローラ](ja/feature_hd44780.md)
* [OLED ドライバ](ja/feature_oled_driver.md)
* 電飾
* [バックライト](ja/feature_backlight.md)
* [LED マトリックス](ja/feature_led_matrix.md)
* [RGB ライト](ja/feature_rgblight.md)
* [RGB マトリックス](ja/feature_rgb_matrix.md)
* [オーディオ](ja/feature_audio.md)
* [Bluetooth](ja/feature_bluetooth.md)
* [ブートマジック](ja/feature_bootmagic.md)
* [カスタムマトリックス](ja/custom_matrix.md)
* [DIP スイッチ](ja/feature_dip_switch.md)
* [エンコーダ](ja/feature_encoders.md)
* [触覚フィードバック](ja/feature_haptic_feedback.md)
* [Proton C 規約](ja/proton_c_conversion.md)
* [PS/2 マウス](ja/feature_ps2_mouse.md)
* [分割キーボード](ja/feature_split_keyboard.md)
* [Stenography](ja/feature_stenography.md)
* [感熱式プリンタ](ja/feature_thermal_printer.md)
* [Velocikey](ja/feature_velocikey.md)
* QMK の開発
* 破壊的な変更
* [概要](ja/breaking_changes.md)
* [プルリクエストにフラグが付けられた](ja/breaking_changes_instructions.md)
* 履歴
* [2020年2月29日](ja/ChangeLog/20200229.md)
* [2019年8月30日](ja/ChangeLog/20190830.md)
* C 開発
* [ARM デバッグ ガイド](ja/arm_debugging.md)
* [AVR プロセッサ](ja/hardware_avr.md)
* [コーディング規約](ja/coding_conventions_c.md)
* [互換性のあるマイクロコントローラ](ja/compatible_microcontrollers.md)
* [ドライバ](ja/hardware_drivers.md)
* [ADC ドライバ](ja/adc_driver.md)
* [I2C ドライバ](ja/i2c_driver.md)
* [SPI ドライバ](ja/spi_driver.md)
* [WS2812 ドライバ](ja/ws2812_driver.md)
* [EEPROM ドライバ](ja/eeprom_driver.md)
* [GPIO コントロール](ja/internals_gpio_control.md)
* [カスタムマトリックス](ja/custom_matrix.md)
* [Proton C 規約](ja/proton_c_conversion.md)
* [キーボード ガイドライン](ja/hardware_keyboard_guidelines.md)
* より深く知るために
* Python 開発
* [コーディング規約](ja/coding_conventions_python.md)
* [QMK CLI 開発](ja/cli_development.md)
* Configurator 開発
* QMK API
* [開発環境](ja/api_development_environment.md)
* [アーキテクチャの概要](ja/api_development_overview.md)
* QMK Reference
* [QMK への貢献](ja/contributing.md)
* [QMK ドキュメントの翻訳](ja/translating.md)
* [設定オプション](ja/config_options.md)
* [Make ドキュメント](ja/getting_started_make_guide.md)
* [ドキュメント ベストプラクティス](ja/documentation_best_practices.md)
* [ドキュメント テンプレート](ja/documentation_templates.md)
* [コミュニティレイアウト](ja/feature_layouts.md)
* [ユニットテスト](ja/unit_testing.md)
* [便利な関数](ja/ref_functions.md)
* [info.json 形式](ja/reference_info_json.md)
* より深く知るために
* [キーボードがどのように動作するか](ja/how_keyboards_work.md)
* [QMK の理解](ja/understanding_qmk.md)
* [マトリックスがどのように動作するか](ja/how_a_matrix_works.md)
* [QMK を理解する](ja/understanding_qmk.md)
* 他の話題
* [Eclipse で QMK を使用](ja/other_eclipse.md)
* [VSCode で QMK を使用](ja/other_vscode.md)
* [サポート](ja/getting_started_getting_help.md)
* [翻訳を追加する方法](ja/translating.md)
* QMK の内部詳細(作成中)
* QMK の内部詳細(作成中)
* [定義](ja/internals_defines.md)
* [Input Callback Reg](ja/internals_input_callback_reg.md)
* [Midi ドライバ](ja/internals_midi_device.md)
* [Midi デバイス](ja/internals_midi_device.md)
* [Midi デバイスのセットアップ手順](ja/internals_midi_device_setup_process.md)
* [Midi ユーティリティ](ja/internals_midi_util.md)
* [Send Functions](ja/internals_send_functions.md)

View File

@ -1,8 +1,8 @@
# Eclipse を使った ARM デバッグ
<!---
original document: eae21eed7:docs/arm_debugging.md
git diff eae21eed7 HEAD -- docs/arm_debugging.md | cat
original document: 0.8.58:docs/arm_debugging.md
git diff 0.8.58 HEAD -- docs/arm_debugging.md | cat
-->
このページでは、SWD アダプタとオープンソース/フリーツールを使って ARM MCU をデバッグするためのセットアップ方法について説明します。このガイドでは、GNU MCU Eclipse IDE for C/C++ Developers および OpenOCD を必要な依存関係と一緒にインストールします。
@ -60,7 +60,7 @@ Java は Eclipse で必要とされるため、[ここ](https://www.oracle.com/t
Eclipse に QMK をビルドしようとするデバイスを教える必要があります。QMK フォルダを右クリック -> Properties -> C/C++ Build -> Settings を選択します。Devices タブを選択し、Devices の下から MCU の適切な種類を選択します。私の例では、STM32F303CC です。
この間に、Build コマンドもセットアップしましょう。C/C++ Build を選択し、Behavior タブを選択します。build コマンドのところで、`all` を必要な make コマンドに置き換えます。例えば、rev6 Planck の default キーマップの場合、これは `planck/rev6:default` になります。Apply and Close を選択します。
この間に、Build コマンドもセットアップしましょう。C/C++ Build を選択し、Behavior タブを選択します。Build コマンドのところで、`all` を必要な make コマンドに置き換えます。例えば、rev6 Planck の default キーマップの場合、これは `planck/rev6:default` になります。Apply and Close を選択します。
## ビルド
@ -70,13 +70,13 @@ Eclipse に QMK をビルドしようとするデバイスを教える必要が
### デバッガの接続
ARM MCU は、クロック信号(SWCLK) とデータ信号(SWDIO) で構成される Single Wire Debug (SWD) プロトコルを使います。MCU を 完全に操作するには、この2本のワイヤとグラウンドを接続するだけで十分です。ここでは、キーボードは USB を介して電力が供給されると想定しています。手動でリセットボタンを使えるため、RESET 信号は必要ありません。より高度なセットアップのために printf と scanf をホストに非同期にパイプする SWO 信号を使用できますが、私たちのセットアップでは無視します。
ARM MCU は、クロック信号(SWCLK) とデータ信号(SWDIO) で構成される Single Wire Debug (SWD) プロトコルを使います。MCU を完全に操作するには、この2本のワイヤとグラウンドを接続するだけで十分です。ここでは、キーボードは USB を介して電力が供給されると想定しています。手動でリセットボタンを使えるため、RESET 信号は必要ありません。より高度なセットアップのために printf と scanf をホストに非同期にパイプする SWO 信号を使用できますが、私たちのセットアップでは無視します。
注意: SWCLK と SWDIO ピンがキーボードのマトリックスで使われていないことを確認してください。もし使われている場合は、一時的に他のピンに切り替えることができます。
### デバッガの設定
QMK フォルダを右クリックし、Debug As -> Debug Configurations... を選択します。ここで、GDB OpenOCD Debugging をダブルクリックします。Debugger タブを選択し、MCU に必要な設定を入力します。これを見つけるにはいじったりググったりする必要があるかもしれません。STM32F3 用のデフォルトスクリプトは stm32f3discovery.cfg と呼ばれます。OpenOCD に伝えるには、Config options で `-f board/stm32f3discovery.cfg` と入力します。
QMK フォルダを右クリックし、Debug As -> Debug Configurations... を選択します。ここで、GDB OpenOCD Debugging をダブルクリックします。Debugger タブを選択し、MCU に必要な設定を入力します。これを見つけるにはいじったりググったりする必要があるかもしれません。STM32F3 用のデフォルトスクリプトは `stm32f3discovery.cfg` と呼ばれます。OpenOCD に伝えるには、Config options で `-f board/stm32f3discovery.cfg` と入力します。
注意: 私の場合、この設定スクリプトはリセット操作を無効にするために編集が必要です。スクリプトの場所は、通常はパス `openocd/version/.content/scripts/board` の下の実際の実行可能フィールドの中で見つかります。ここで、私は `reset_config srst_only``reset_config none` に編集しました。
@ -86,7 +86,7 @@ Apply and Close を選択します。
キーボードをリセットしてください。
虫アイコンをクリックし、もし全てうまく行けば Debug パースペクティブに移動します。ここでは、main 関数の最初でプログラムカウンタが停止するので、Play ボタンを押します。全てのデバッガのほとんどの機能は ARM MCU で動作しますが、正確な詳細については google があなたのお友達です!
虫アイコンをクリックし、もし全てうまく行けば Debug パースペクティブに移動します。ここでは、main 関数の最初でプログラムカウンタが停止し、Play ボタンが押されるのを待ちます。全てのデバッガのほとんどの機能は Arm MCU で動作しますが、正確な詳細については Google があなたのお友達です!
ハッピーデバッギング!

View File

@ -1,29 +1,19 @@
# QMK CLI
# QMK CLI :id=qmk-cli
<!---
original document: 79e6b7866:docs/cli.md
git diff 79e6b7866 HEAD -- docs/cli.md | cat
original document: 0.8.58:docs/cli.md
git diff 0.8.58 HEAD -- docs/cli.md | cat
-->
このページは QMK CLI のセットアップと使用方法について説明します。
# 概要
## 概要 :id=overview
QMK CLI を使用すると QMK キーボードの構築と作業が簡単になります。QMK ファームウェアの取得とコンパイル、キーマップの作成などのようなタスクを簡素化し合理化するためのコマンドを多く提供します。
* [グローバル CLI](#global-cli)
* [ローカル CLI](#local-cli)
* [CLI コマンド](#cli-commands)
### 必要事項 :id=requirements
# 必要事項
CLI は Python 3.5 以上を必要とします。我々は必要事項の数を少なくしようとしていますが、[`requirements.txt`](https://github.com/qmk/qmk_firmware/blob/master/requirements.txt) に列挙されているパッケージもインストールする必要があります。これらは QMK CLI をインストールするときに自動的にインストールされます。
CLI は Python 3.5 以上を必要とします。我々は必要事項の数を少なくしようとしていますが、[`requirements.txt`](https://github.com/qmk/qmk_firmware/blob/master/requirements.txt) にリストされているパッケージもインストールする必要があります。
# グローバル CLI :id=global-cli
QMK は、QMK ビルド環境のセットアップ、QMK の操作、および `qmk_firmware` の複数のコピーの操作を容易にできるインストール可能な CLI を提供します。これを定期的にインストールおよび更新することをお勧めします。
## Homebrew を使ったインストール (macOS、いくつかの Linux)
### Homebrew を使ったインストール (macOS、いくつかの Linux) :id=install-using-homebrew
[Homebrew](https://brew.sh) をインストールしている場合は、タップして QMK をインストールすることができます:
@ -34,7 +24,7 @@ export QMK_HOME='~/qmk_firmware' # オプション、`qmk_firmware` の場所を
qmk setup # これは `qmk/qmk_firmware` をクローンし、オプションでビルド環境をセットアップします
```
## easy_install あるいは pip を使ってインストール
### easy_install あるいは pip を使ってインストール :id=install-using-easy_install-or-pip
上のリストにあなたのシステムがない場合は、QMK を手動でインストールすることができます。最初に、python 3.5 (以降)をインストールしていて、pip をインストールしていることを確認してください。次に以下のコマンドを使って QMK をインストールします:
@ -44,7 +34,7 @@ export QMK_HOME='~/qmk_firmware' # オプション、`qmk_firmware` の場所を
qmk setup # これは `qmk/qmk_firmware` をクローンし、オプションでビルド環境をセットアップします
```
## 他のオペレーティングシステムのためのパッケージ
### 他のオペレーティングシステムのためのパッケージ :id=packaging-for-other-operating-systems
より多くのオペレーティングシステム用に `qmk` パッケージを作成および保守する人を探しています。OS 用のパッケージを作成する場合は、以下のガイドラインに従ってください:
@ -52,247 +42,3 @@ qmk setup # これは `qmk/qmk_firmware` をクローンし、オプション
* 逸脱する場合は、理由をコメントに文章化してください。
* virtualenv を使ってインストールしてください
* 環境変数 `QMK_HOME` を設定して、ファームウェアソースを `~/qmk_firmware` 以外のどこかにチェックアウトするようにユーザに指示してください。
# ローカル CLI :id=local-cli
グローバル CLI を使いたくない場合は、`qmk_firmware` に付属のローカル CLI があります。`qmk_firmware/bin/qmk` で見つけることができます。任意のディレクトリから `qmk` コマンドを実行でき、常に `qmk_firmware` のコピー上で動作します。
**例**:
```
$ ~/qmk_firmware/bin/qmk hello
Ψ Hello, World!
```
## ローカル CLI の制限
グローバル CLI と比較して、ローカル CLI には幾つかの制限があります:
* ローカル CLI は `qmk setup` あるいは `qmk clone` をサポートしません。
* 複数のリポジトリがクローンされている場合でも、ローカル CLI は常に `qmk_firmware` ツリー上で動作します。
* ローカル CLI は virtualenv で動作しません。そのため依存関係が競合する可能性があります
# CLI コマンド :id=cli-commands
## `qmk cformat`
このコマンドは clang-format を使って C コードを整形します。引数無しで実行して全てのコアコードを整形するか、コマンドラインでファイル名を渡して特定のファイルに対して実行します。
**使用法**:
```
qmk cformat [file1] [file2] [...] [fileN]
```
## `qmk compile`
このコマンドにより、任意のディレクトリからファームウェアをコンパイルすることができます。<https://config.qmk.fm> からエクスポートした JSON をコンパイルするか、リポジトリ内でキーマップをコンパイルするか、現在の作業ディレクトリでキーボードをコンパイルすることができます。
**Configurator Exports での使い方**:
```
qmk compile <configuratorExport.json>
```
**キーマップでの使い方**:
```
qmk compile -kb <keyboard_name> -km <keymap_name>
```
**キーボードディレクトリでの使い方**:
default キーマップのあるキーボードディレクトリ、キーボードのキーマップディレクトリ、`--keymap <keymap_name>` で与えられるキーマップディレクトリにいなければなりません。
```
qmk compile
```
**例**:
```
$ qmk config compile.keymap=default
$ cd ~/qmk_firmware/keyboards/planck/rev6
$ qmk compile
Ψ Compiling keymap with make planck/rev6:default
...
```
あるいはオプションのキーマップ引数を指定して
```
$ cd ~/qmk_firmware/keyboards/clueboard/66/rev4
$ qmk compile -km 66_iso
Ψ Compiling keymap with make clueboard/66/rev4:66_iso
...
```
あるいはキーマップディレクトリで
```
$ cd ~/qmk_firmware/keyboards/gh60/satan/keymaps/colemak
$ qmk compile
Ψ Compiling keymap with make make gh60/satan:colemak
...
```
**レイアウトディレクトリでの使い方**:
`qmk_firmware/layouts/` 以下のキーマップディレクトリにいなければなりません。
```
qmk compile -kb <keyboard_name>
```
**例**:
```
$ cd ~/qmk_firmware/layouts/community/60_ansi/mechmerlin-ansi
$ qmk compile -kb dz60
Ψ Compiling keymap with make dz60:mechmerlin-ansi
...
```
## `qmk flash`
このコマンドは `qmk compile` に似ていますが、ブートローダを対象にすることもできます。ブートローダはオプションで、デフォルトでは `:flash` に設定されています。
違うブートローダを指定するには、`-bl <bootloader>` を使ってください。利用可能なブートローダの詳細については、<https://docs.qmk.fm/#/ja/flashing>
を見てください。
**Configurator Exports での使い方**:
```
qmk flash <configuratorExport.json> -bl <bootloader>
```
**キーマップでの使い方**:
```
qmk flash -kb <keyboard_name> -km <keymap_name> -bl <bootloader>
```
**ブートローダのリスト**
```
qmk flash -b
```
## `qmk config`
このコマンドにより QMK の挙動を設定することができます。完全な `qmk config` のドキュメントについては、[CLI 設定](ja/cli_configuration.md)を見てください。
**使用法**:
```
qmk config [-ro] [config_token1] [config_token2] [...] [config_tokenN]
```
## `qmk docs`
このコマンドは、ドキュメントを参照または改善するために使うことができるローカル HTTP サーバを起動します。デフォルトのポートは 8936 です。
**使用法**:
```
qmk docs [-p PORT]
```
## `qmk doctor`
このコマンドは環境を調査し、潜在的なビルドあるいは書き込みの問題について警告します。必要に応じてそれらの多くを修正できます。
**使用法**:
```
qmk doctor [-y] [-n]
```
**例**:
環境に問題がないか確認し、それらを修正するよう促します:
qmk doctor
環境を確認し、見つかった問題を自動的に修正します:
qmk doctor -y
環境を確認し、問題のみをレポートします:
qmk doctor -n
## `qmk json2c`
QMK Configurator からエクスポートしたものから keymap.c を生成します。
**使用法**:
```
qmk json2c [-o OUTPUT] filename
```
## `qmk kle2json`
このコマンドにより、生の KLE データから QMK Configurator の JSON へ変換することができます。絶対パスあるいは現在のディレクトリ内のファイル名のいずれかを受け取ります。デフォルトでは、`info.json` が既に存在している場合は上書きしません。上書きするには、`-f` あるいは `--force` フラグを使ってください。
**使用法**:
```
qmk kle2json [-f] <filename>
```
**例**:
```
$ qmk kle2json kle.txt
☒ File info.json already exists, use -f or --force to overwrite.
```
```
$ qmk kle2json -f kle.txt -f
Ψ Wrote out to info.json
```
## `qmk list-keyboards`
このコマンドは現在 `qmk_firmware` で定義されている全てのキーボードをリスト化します。
**使用法**:
```
qmk list-keyboards
```
## `qmk list-keymaps`
このコマンドは指定されたキーボード(とリビジョン)の全てのキーマップをリスト化します。
**使用法**:
```
qmk list-keymaps -kb planck/ez
```
## `qmk new-keymap`
このコマンドは、キーボードの既存のデフォルトのキーマップに基づいて新しいキーマップを作成します。
**使用法**:
```
qmk new-keymap [-kb KEYBOARD] [-km KEYMAP]
```
## `qmk pyformat`
このコマンドは `qmk_firmware` 内の python コードを整形します。
**使用法**:
```
qmk pyformat
```
## `qmk pytest`
このコマンドは python のテストスィートを実行します。python コードに変更を加えた場合、これの実行が成功することを確認する必要があります。
**使用法**:
```
qmk pytest
```

258
docs/ja/cli_commands.md Normal file
View File

@ -0,0 +1,258 @@
# QMK CLI コマンド
<!---
original document: 0.8.58:docs/cli.md
git diff 0.8.58 HEAD -- docs/cli.md | cat
-->
# CLI コマンド
## `qmk cformat`
このコマンドは clang-format を使って C コードを整形します。
引数無しで実行すると、変更された全てのコアコードを整形します。デフォルトでは `git diff``origin/master` をチェックし、ブランチは `-b <branch_name>` を使って変更できます。
`-a` で全てのコアコードを整形するか、コマンドラインでファイル名を渡して特定のファイルに対して実行します。
**指定したファイルに対する使い方**:
```
qmk cformat [file1] [file2] [...] [fileN]
```
**全てのコアファイルに対する使い方**:
```
qmk cformat -a
```
**origin/master で変更されたファイルのみに対する使い方**:
```
qmk cformat
```
**branch_name で変更されたファイルのみに対する使い方**:
```
qmk cformat -b branch_name
```
## `qmk compile`
このコマンドにより、任意のディレクトリからファームウェアをコンパイルすることができます。<https://config.qmk.fm> からエクスポートした JSON をコンパイルするか、リポジトリ内でキーマップをコンパイルするか、現在の作業ディレクトリでキーボードをコンパイルすることができます。
**Configurator Exports での使い方**:
```
qmk compile <configuratorExport.json>
```
**キーマップでの使い方**:
```
qmk compile -kb <keyboard_name> -km <keymap_name>
```
**キーボードディレクトリでの使い方**:
default キーマップのあるキーボードディレクトリ、キーボードのキーマップディレクトリ、`--keymap <keymap_name>` で与えられるキーマップディレクトリにいなければなりません。
```
qmk compile
```
**指定したキーマップをサポートする全てのキーボードをビルドする場合の使い方**:
```
qmk compile -kb all -km <keymap_name>
```
**例**:
```
$ qmk config compile.keymap=default
$ cd ~/qmk_firmware/keyboards/planck/rev6
$ qmk compile
Ψ Compiling keymap with make planck/rev6:default
...
```
あるいはオプションのキーマップ引数を指定して
```
$ cd ~/qmk_firmware/keyboards/clueboard/66/rev4
$ qmk compile -km 66_iso
Ψ Compiling keymap with make clueboard/66/rev4:66_iso
...
```
あるいはキーマップディレクトリで
```
$ cd ~/qmk_firmware/keyboards/gh60/satan/keymaps/colemak
$ qmk compile
Ψ Compiling keymap with make make gh60/satan:colemak
...
```
**レイアウトディレクトリでの使い方**:
`qmk_firmware/layouts/` 以下のキーマップディレクトリにいなければなりません。
```
qmk compile -kb <keyboard_name>
```
**例**:
```
$ cd ~/qmk_firmware/layouts/community/60_ansi/mechmerlin-ansi
$ qmk compile -kb dz60
Ψ Compiling keymap with make dz60:mechmerlin-ansi
...
```
## `qmk flash`
このコマンドは `qmk compile` に似ていますが、ブートローダを対象にすることもできます。ブートローダはオプションで、デフォルトでは `:flash` に設定されています。
違うブートローダを指定するには、`-bl <bootloader>` を使ってください。利用可能なブートローダの詳細については、[ファームウェアを書き込む](ja/flashing.md)を見てください。
**Configurator Exports での使い方**:
```
qmk flash <configuratorExport.json> -bl <bootloader>
```
**キーマップでの使い方**:
```
qmk flash -kb <keyboard_name> -km <keymap_name> -bl <bootloader>
```
**ブートローダの列挙**
```
qmk flash -b
```
## `qmk config`
このコマンドにより QMK の挙動を設定することができます。完全な `qmk config` のドキュメントについては、[CLI 設定](ja/cli_configuration.md)を見てください。
**使用法**:
```
qmk config [-ro] [config_token1] [config_token2] [...] [config_tokenN]
```
## `qmk docs`
このコマンドは、ドキュメントを参照または改善するために使うことができるローカル HTTP サーバを起動します。デフォルトのポートは 8936 です。
**使用法**:
```
qmk docs [-p PORT]
```
## `qmk doctor`
このコマンドは環境を調査し、潜在的なビルドあるいは書き込みの問題について警告します。必要に応じてそれらの多くを修正できます。
**使用法**:
```
qmk doctor [-y] [-n]
```
**例**:
環境に問題がないか確認し、それらを修正するよう促します:
qmk doctor
環境を確認し、見つかった問題を自動的に修正します:
qmk doctor -y
環境を確認し、問題のみをレポートします:
qmk doctor -n
## `qmk json2c`
QMK Configurator からエクスポートしたものから keymap.c を生成します。
**使用法**:
```
qmk json2c [-o OUTPUT] filename
```
## `qmk kle2json`
このコマンドにより、生の KLE データから QMK Configurator の JSON へ変換することができます。絶対パスあるいは現在のディレクトリ内のファイル名のいずれかを受け取ります。デフォルトでは、`info.json` が既に存在している場合は上書きしません。上書きするには、`-f` あるいは `--force` フラグを使ってください。
**使用法**:
```
qmk kle2json [-f] <filename>
```
**例**:
```
$ qmk kle2json kle.txt
☒ File info.json already exists, use -f or --force to overwrite.
```
```
$ qmk kle2json -f kle.txt -f
Ψ Wrote out to info.json
```
## `qmk list-keyboards`
このコマンドは現在 `qmk_firmware` で定義されている全てのキーボードを列挙します。
**使用法**:
```
qmk list-keyboards
```
## `qmk list-keymaps`
このコマンドは指定されたキーボード(とリビジョン)の全てのキーマップを列挙します。
**使用法**:
```
qmk list-keymaps -kb planck/ez
```
## `qmk new-keymap`
このコマンドは、キーボードの既存のデフォルトのキーマップに基づいて新しいキーマップを作成します。
**使用法**:
```
qmk new-keymap [-kb KEYBOARD] [-km KEYMAP]
```
## `qmk pyformat`
このコマンドは `qmk_firmware` 内の python コードを整形します。
**使用法**:
```
qmk pyformat
```
## `qmk pytest`
このコマンドは python のテストスィートを実行します。python コードに変更を加えた場合、これの実行が成功することを確認する必要があります。
**使用法**:
```
qmk pytest
```

View File

@ -1,8 +1,8 @@
# QMK の設定
<!---
original document: 2fe288d01:docs/config_options.md
git diff 2fe288d01 HEAD -- docs/config_options.md | cat
original document: 0.8.62:docs/config_options.md
git diff 0.8.62 HEAD -- docs/config_options.md | cat
-->
QMK はほぼ無制限に設定可能です。可能なところはいかなるところでも、やりすぎな程、ユーザーがコードサイズを犠牲にしてでも彼らのキーボードをカスタマイズをすることを許しています。ただし、このレベルの柔軟性により設定が困難になります。
@ -58,6 +58,8 @@ QMK での全ての利用可能な設定にはデフォルトがあります。
* 行のピン、上から下へ
* `#define MATRIX_COL_PINS { F1, F0, B0, C7, F4, F5, F6, F7, D4, D6, B4, D7 }`
* 列のピン、左から右へ
* `#define MATRIX_IO_DELAY 30`
* マトリックスピン状態の変更と値の読み取り間のマイクロ秒単位の遅延
* `#define UNUSED_PINS { D1, D2, D3, B1, B2, B3 }`
* 参考として、キーボードで使われていないピン
* `#define MATRIX_HAS_GHOST`
@ -139,20 +141,22 @@ QMK での全ての利用可能な設定にはデフォルトがあります。
* キーごとの `TAPPING_TERM` 設定の処理を有効にします
* `#define RETRO_TAPPING`
* 押下とリリースの間に他のキーによる中断がなければ、TAPPING_TERM の後であってもとにかくタップします
* 詳細は [Retro Tapping](ja/feature_advanced_keycodes.md#retro-tapping) を見てください
* 詳細は [Retro Tapping](ja/tap_hold.md#retro-tapping) を見てください
* `#define TAPPING_TOGGLE 2`
* トグルを引き起こす前のタップ数
* `#define PERMISSIVE_HOLD`
* `TAPPING_TERM` にヒットしていなくても、リリースする前に別のキーが押されると、タップとフォールドキーがホールドを引き起こします
* 詳細は [Permissive Hold](ja/feature_advanced_keycodes.md#permissive-hold) を見てください
* `TAPPING_TERM` にヒットしていなくても、リリースする前に別のキーが押されると、タップとホールドキーがホールドを引き起こします
* 詳細は [Permissive Hold](ja/tap_hold.md#permissive-hold) を見てください
* `#define PERMISSIVE_HOLD_PER_KEY`
* キーごとの `PERMISSIVE_HOLD` 設定の処理を有効にします
* `#define IGNORE_MOD_TAP_INTERRUPT`
* 両方のキーに `TAPPING_TERM` を適用することで、ホールド時に他のキーに変換するキーを使ってローリングコンボ (zx) をすることができるようにします
* 詳細は [Mod tap interrupt](ja/feature_advanced_keycodes.md#ignore-mod-tap-interrupt) を見てください
* 詳細は [Ignore Mod Tap Interrupt](ja/tap_hold.md#ignore-mod-tap-interrupt) を見てください
* `#define IGNORE_MOD_TAP_INTERRUPT_PER_KEY`
* キーごとの `IGNORE_MOD_TAP_INTERRUPT` 設定の処理を有効にします
* `#define TAPPING_FORCE_HOLD`
* タップされた直後に、デュアルロールキーを修飾子として使用できるようにします
* [Hold after tap](ja/feature_advanced_keycodes.md#tapping-force-hold)を見てください
* [Tapping Force Hold](ja/tap_hold.md#tapping-force-hold)を見てください
* タップトグル機能を無効にします (`TT` あるいは One Shot Tap Toggle)
* `#define TAPPING_FORCE_HOLD_PER_KEY`
* キーごとの `TAPPING_FORCE_HOLD` 設定処理を有効にします。
@ -184,6 +188,8 @@ QMK での全ての利用可能な設定にはデフォルトがあります。
* WS2812 の DI 端子につなぐピン
* `#define RGBLIGHT_ANIMATIONS`
* RGB アニメーションを実行します
* `#define RGBLIGHT_LAYERS`
* オンとオフを切り替えることができる [ライトレイヤー](ja/feature_rgblight.md) を定義できます。現在のキーボードレイヤーまたは Caps Lock 状態を表示するのに最適です。
* `#define RGBLED_NUM 12`
* LED の数
* `#define RGBLIGHT_SPLIT`
@ -328,7 +334,7 @@ QMK での全ての利用可能な設定にはデフォルトがあります。
* `bootloadHID`
* `USBasp`
## 機能オプション
## 機能オプション :id=feature-options
これらを使って特定の機能のビルドを有効または無効にします。有効にすればするほどファームウェアが大きくなり、MCU には大きすぎるファームウェアを構築するリスクがあります。

View File

@ -1,8 +1,8 @@
# 貢献方法
<!---
original document: d47809575:docs/contributing.md
git diff d47809575 HEAD -- docs/contributing.md | cat
original document: 0.8.62:docs/contributing.md
git diff 0.8.62 HEAD -- docs/contributing.md | cat
-->
👍🎉 まず、これを読み貢献する時間を作ってくれてありがとうございます!🎉👍
@ -106,7 +106,7 @@ enum my_keycodes {
};
```
### ドキュメントのプレビュー
### ドキュメントのプレビュー :id=previewing-the-documentation
開発環境をセットアップした場合は、プルリクエストを開く前に以下のコマンドを `qmk_firmware/` フォルダから実行することで、あなたの変更をプレビューすることができます:
@ -122,7 +122,7 @@ enum my_keycodes {
ほとんどの初めての QMK 貢献者は、個人のキーマップから始めます。キーマップの標準はかなりカジュアルなものにしようとしています(キーマップは結局のところ作成者の性格を反映しています)が、他の人があなたのキーマップを簡単に見つけて学ぶことができるように、これらのガイドラインに従うようにお願いします。
* [the template](documentation_templates.md) を使って `readme.md` を書きます。
* [テンプレート](documentation_templates.md) を使って `readme.md` を書きます。
* 全てのキーマップの PR は squash されるため、コミットがどのように squash されるかを気にする場合は、自分で行う必要があります。
* キーマップの PR に機能をまとめないでください。最初に機能をサブミットし、次にキーマップのための2つ目の PR をサブミットします。
* `Makefile` をキーマップフォルダに含めないでください(もう使われていません)。
@ -134,7 +134,7 @@ enum my_keycodes {
また以下のガイドラインに従うことをお願いします:
* [the template](ja/documentation_templates.md) を使って `readme.md` を書きます。
* [テンプレート](ja/documentation_templates.md) を使って `readme.md` を書きます。
* コミットの数を適切に保ってください。そうでなければあなたの PR を squash します。
* コア機能を新しいキーボードにまとめないでください。最初に機能をサブミットし、次にキーボード用に別の PR をサブミットしてください。
* `.c`/`.h` ファイルにすぐ上の親フォルダに従って名前を付けます。例えば、`/keyboards/<kb1>/<kb2>/<kb2>.[ch]`

114
docs/ja/custom_matrix.md Normal file
View File

@ -0,0 +1,114 @@
# カスタムマトリックス
<!---
grep --no-filename "^[ ]*git diff" docs/ja/*.md | sh
original document: 0.8.46:docs/custom_matrix.md
git diff 0.8.46 HEAD -- docs/custom_matrix.md | cat
-->
QMKは、デフォルトのマトリックススキャンルーチンを独自のコードで部分的に入れ替えたり全部入れ替えたりしたりするメカニズムを提供します。
この機能を使用する理由は次のとおりです:
* キーボードのスイッチと MCU ピンの間に追加のハードウェアがある場合
* I/O マルチプレクサ
* ラインデコーダー
* 一般的ではないキースイッチマトリックス
* `COL2ROW``ROW2COL` の同時使用
## 前提条件
カスタムマトリックスの実装には、通常、追加のソースファイルのコンパイルが含まれます。
一貫性を保つために、このソースファイルのファイル名は `matrix.c` とすることをお勧めします。
あなたのキーボードディレクトリに新しいファイルを追加します:
```text
keyboards/<keyboard>/matrix.c
```
そして、新しいファイルのコンパイルを指定するため、以下を `rules.mk` に追加します
```make
SRC += matrix.c
```
## マトリックスコードの部分置き換え
カスタムマトリックスを実装する際、定型コードを書かなくてすむように、さまざまなスキャン関数のデフォルト実装を提供しています。
設定するには、以下を `rules.mk` に追加します:
```make
CUSTOM_MATRIX = lite
```
そして、キーボードディレクトリの `matrix.c` ファイルに次の関数を実装します。
```c
void matrix_init_custom(void) {
// TODO: ここでハードウェアの初期化をする
}
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
bool matrix_has_changed = false;
// TODO: ここで、マトリックススキャンを行なう
return matrix_has_changed;
}
```
## マトリックスコードの全面置き換え
スキャンルーチンをさらに変更する必要がある場合は、完全なスキャンルーチンを実装することを選択できます。
設定するには、以下を `rules.mk` に追加します:
```make
CUSTOM_MATRIX = yes
```
そして、キーボードディレクトリの `matrix.c` ファイルに次の関数を実装します。
```c
matrix_row_t matrix_get_row(uint8_t row) {
// TODO: 要求された行データを返します
}
void matrix_print(void) {
// TODO: printf() を使って現在のマトリックスの状態をコンソールにダンプします
}
void matrix_init(void) {
// TODO: ここでハードウェアとグローバルマトリックスの状態を初期化します
// ハードウェアによるデバウンスがない場合 - 設定されているデバウンスルーチンを初期化します
debounce_init(MATRIX_ROWS);
// 正しいキーボード動作のためにこれを呼び出す*必要があります*
matrix_init_quantum();
}
uint8_t matrix_scan(void) {
bool matrix_has_changed = false;
// TODO: ここにマトリックススキャンルーチンを追加します
// ハードウェアによるデバウンスがない場合 - 設定されているデバウンスルーチンを使用します
debounce(raw_matrix, matrix, MATRIX_ROWS, changed);
// 正しいキーボード動作のためにこれを呼び出す*必要があります*
matrix_scan_quantum();
return matrix_has_changed;
}
```
また、次のコールバックのデフォルトも提供します。
```c
__attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); }
__attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); }
__attribute__((weak)) void matrix_init_user(void) {}
__attribute__((weak)) void matrix_scan_user(void) {}
```

View File

@ -1,8 +1,8 @@
# キーボードの挙動をカスタマイズする方法
<!---
original document: 7494490d6:docs/custom_quantum_functions.md
git diff 7494490d6 HEAD -- docs/custom_quantum_functions.md | cat
original document: 0.8.62:docs/custom_quantum_functions.md
git diff 0.8.62 HEAD -- docs/custom_quantum_functions.md | cat
-->
多くの人にとって、カスタムキーボードはボタンの押下をコンピュータに送信するだけではありません。単純なボタンの押下やマクロよりも複雑なことを実行できるようにしたいでしょう。QMK にはコードを挿入したり、機能を上書きしたり、様々な状況でキーボードの挙動をカスタマイズできるフックがあります。
@ -39,7 +39,7 @@ enum my_keycodes {
};
```
## 任意のキーコードの挙動のプログラミング
## 任意のキーコードの挙動のプログラミング :id=programming-the-behavior-of-any-keycode
既存のキーの挙動を上書きしたい場合、あるいは新しいキーについて挙動を定義する場合、`process_record_kb()` および `process_record_user()` 関数を使うべきです。これらは実際のキーイベントが処理される前のキー処理中に QMK によって呼び出されます。これらの関数が `true` を返す場合、QMK はキーコードを通常通りに処理します。これは、キーを置き換えるのではなく、キーの機能を拡張するのに便利です。これらの関数が `false` を返す場合、QMK は通常のキー処理をスキップし、必要なキーのアップまたはダウンイベントを送信するのかはユーザ次第です。
@ -316,7 +316,7 @@ void suspend_wakeup_init_user(void) {
* キーボード/リビジョン : `void suspend_power_down_kb(void)` および `void suspend_wakeup_init_user(void)`
* キーマップ: `void suspend_power_down_kb(void)` および `void suspend_wakeup_init_user(void)`
# レイヤー切り替えコード
# レイヤー切り替えコード :id=layer-change-code
これはレイヤーが切り替えられるたびにコードを実行します。レイヤー表示あるいはカスタムレイヤー処理に役立ちます。
@ -491,14 +491,24 @@ void eeconfig_init_user(void) { // EEPROM がリセットされます!
# カスタムタッピング期間
デフォルトでは、タッピング期間はグローバルに設定されていて、キーでは設定することができません。ほとんどのユーザにとって、これは全然問題ありません。しかし、場合によっては、`LT` キーとは異なるタイムアウトによって、デュアルファンクションキーが大幅に改善されます。なぜなら、一部のキーは他のキーよりも押し続けやすいためです。それぞれにカスタムキーコードを使う代わりに、キーごとに設定可能な `TAPPING_TERM` を使用できます。
デフォルトでは、タッピング期間と(`IGNORE_MOD_TAP_INTERRUPT` のような)関連オプションはグローバルに設定されていて、キーでは設定することができません。ほとんどのユーザにとって、これは全然問題ありません。しかし、場合によっては、`LT` キーとは異なるタイムアウトによって、デュアルファンクションキーが大幅に改善されます。なぜなら、一部のキーは他のキーよりも押し続けやすいためです。それぞれにカスタムキーコードを使う代わりに、キーごとに設定可能なタイムアウトの挙動を設定できます。
この機能を有効にするには、最初に `config.h``#define TAPPING_TERM_PER_KEY` を追加する必要があります。
キーごとのタイムアウトの挙動を制御するための2つの設定可能なオプションがあります:
- `TAPPING_TERM_PER_KEY`
- `IGNORE_MOD_TAP_INTERRUPT_PER_KEY`
必要な機能ごとに、`config.h` に `#define` 行を追加する必要があります。
```
#define TAPPING_TERM_PER_KEY
#define IGNORE_MOD_TAP_INTERRUPT_PER_KEY
```
## `get_tapping_term` の実装例
キーコードに基づいて `TAPPING TERM` を変更するには、次のようなものを `keymap.c` ファイルに追加します:
キーコードに基づいて `TAPPING_TERM` を変更するには、次のようなものを `keymap.c` ファイルに追加します:
```c
uint16_t get_tapping_term(uint16_t keycode) {
@ -513,6 +523,21 @@ uint16_t get_tapping_term(uint16_t keycode) {
}
```
### `get_tapping_term` 関数のドキュメント
## `get_ignore_mod_tap_interrupt` の実装例
キーコードに基づいて `IGNORE_MOD_TAP_INTERRUPT` の値を変更するには、次のようなものを `keymap.c` ファイルに追加します:
```c
bool get_ignore_mod_tap_interrupt(uint16_t keycode) {
switch (keycode) {
case SFT_T(KC_SPC):
return true;
default:
return false;
}
}
```
## `get_tapping_term` / `get_ignore_mod_tap_interrupt` 関数のドキュメント
ここにある他の多くの関数とは異なり、quantum あるいはキーボードレベルの関数を持つ必要はありません (または理由さえありません)。ここではユーザレベルの関数だけが有用なため、そのようにマークする必要はありません。

View File

@ -1,11 +0,0 @@
# よくある質問
<!---
original document: d598f01cb:docs/faq.md
git diff d598f01cb HEAD -- docs/faq.md | cat
-->
* [一般](ja/faq_general.md)
* [QMK のビルドあるいはコンパイル](ja/faq_build.md)
* [QMK のデバッグとトラブルシューティング](ja/faq_debug.md)
* [キーマップ](ja/faq_keymap.md)

View File

@ -152,10 +152,3 @@ https://geekhack.org/index.php?topic=14290.msg1884034#msg1884034
https://github.com/tmk/tmk_keyboard/issues/266
https://geekhack.org/index.php?topic=41989.msg1967778#msg1967778
## FLIP が動作しない
### `AtLibUsbDfu.dll` が見つかりません
デバイスマネージャから現在のドライバを削除し、FLIP が提供するものを再インストールします。
http://imgur.com/a/bnwzy

View File

@ -1,14 +1,52 @@
# よくある質問
<!---
original document: d598f01cb:docs/faq_general.md
git diff d598f01cb HEAD -- docs/faq_general.md | cat
original document: 0.8.62:docs/faq_general.md
git diff 0.8.62 HEAD -- docs/faq_general.md | cat
-->
## QMK とは何か?
Quantum Mechanical Keyboard の略である [QMK](https://github.com/qmk) は、カスタムキーボードのためのツールをビルドしている人々のグループです。[TMK](https://github.com/tmk/tmk_keyboard) の大幅に修正されたフォークである [QMK ファームウェア](https://github.com/qmk/qmk_firmware)から始まりました。
## どこから始めればいいかわかりません!
この場合は、[初心者ガイド](ja/newbs.md) から始めるべきです。ここには多くの素晴らしい情報があり、それらはあなたが始めるのに必要な全てをカバーするはずです。
問題がある場合は、[QMK Configurator](https://config.qmk.fm)にアクセスしてください。あなたが必要なものの大部分が処理されます。
## ビルドしたファームウェアを書き込むにはどうすればいいですか?
まず、[コンパイル/書き込み FAQ ページ](ja/faq-build.md) に進みます。そこにはたくさんの情報があり、そこには一般的な問題に対する多くの解決策があります。
## ここで取り上げていない問題がある場合はどうしますか?
OK、問題ありません。[GitHub で issue を開く](https://github.com/qmk/qmk_firmware/issues) をチェックして、誰かが同じこと(似ているかだけでなく実際に同じであることを確認してください)を経験しているかどうかを確認してください。
もし何も見つからない場合は、[新しい issue](https://github.com/qmk/qmk_firmware/issues/new) を開いてください!
## バグを見つけたらどうしますか?
[issue](https://github.com/qmk/qmk_firmware/issues/new) を開いてください。そしてもし修正方法を知っている場合は、GitHub で修正のプルリクエストを開いてください。
## しかし、`git` と `GitHub` は怖いです!
心配しないでください。開発を容易にするために `git` と GitHub を使い始めるための、かなり良い [ガイドライン](ja/newbs_git_best_practices.md) があります。
さらに、追加の `git` と GitHub の関連リンクを [ここ](ja/newbs_learn_more_resources.md) に見つけることができます。
## サポートを追加したいキーボードがあります
素晴らしい!プルリクエストを開いてください。私たちはコードをレビューし、マージします!
### `QMK` でブランドしたい場合はどうればいいですか?
素晴らしい!私たちはあなたを支援したいと思います!
実際、私たちにはあなたのページとキーボードに QMK ブランドを追加するための [完全なページ](https://qmk.fm/powered/) があります。これは QMK を公式にサポートするために必要なほぼ全て(知識と画像)をカバーしています。
これについて質問がある場合は、issue を開くか、[Discord](https://discord.gg/Uq7gcHh) に進んでください。
## QMK と TMK の違いは何か?
TMK は [Jun Wako](https://github.com/tmk) によって設計され実装されました。QMK は [Jack Humbert](https://github.com/jackhumbert) の Planck 用 TMK のフォークとして始まりました。しばらくして、Jack のフォークは TMK からかなり分岐し、2015年に Jack はフォークを QMK に名前を変えることにしました。

View File

@ -1,8 +1,8 @@
# キーマップの FAQ
<!---
original document: 376419a4f:docs/faq_keymap.md
git diff 376419a4f HEAD -- docs/faq_keymap.md | cat
original document: 0.8.62:docs/faq_keymap.md
git diff 0.8.62 HEAD -- docs/faq_keymap.md | cat
-->
このページは人々がキーマップについてしばしば持つ疑問について説明します。まだ読んだことが無い場合には、[キーマップの概要](ja/keymap.md)を最初に読むべきです。
@ -19,9 +19,20 @@
<!-- Source for this image: http://www.keyboard-layout-editor.com/#/gists/bf431647d1001cff5eff20ae55621e9a -->
![キーボードのレイアウトイメージ](https://i.imgur.com/5wsh5wM.png)
## 複雑なキーコードのカスタム名を作成する方法はありますか?
時には、読みやすくするために、一部のキーコードにカスタム名を定義すると役に立ちます。人々は、しばしば `#define` を使ってカスタム名を定義します。例えば:
```c
#define FN_CAPS LT(_FL, KC_CAPSLOCK)
#define ALT_TAB LALT(KC_TAB)
```
これにより、キーマップで `FN_CAPS``ALT_TAB` を使えるようになり、読みやすくなります。
## 一部のキーが入れ替わっているか、または動作しない
QMK には2つの機能、ブートマジックとコマンドがあり、これによりその場でキーボードの動作を変更することができます。これには Ctrl/Caps の交換、Gui の無効化、Alt/GUI の交換、Backspace/Backslash の交換、全てのキーの無効化およびその他の動作の変更が含まれますが、これらに限定されません。
QMK には2つの機能、ブートマジックとコマンドがあり、これによりその場でキーボードの動作を変更することができます。これには Ctrl/Caps の交換、Gui の無効化、Alt/Gui の交換、Backspace/Backslash の交換、全てのキーの無効化およびその他の動作の変更が含まれますが、これらに限定されません。
迅速な解決策として、キーボードを接続している時に `Space`+`Backspace` を押してみてください。これはキーボードに保存されている設定をリセットし、これらのキーを通常の操作に戻します。うまく行かない場合は、以下を見てください:

View File

@ -0,0 +1,85 @@
# レイヤーの切り替えとトグル :id=switching-and-toggling-layers
<!---
original document: 5d5ff80:docs/feature_advanced_keycodes.md
git diff 5d5ff80 HEAD -- docs/feature_advanced_keycodes.md | cat
-->
これらの機能により、様々な方法でレイヤーをアクティブ化することができます。レイヤーは一般的に独立したレイアウトでは無いことに注意してください -- 複数のレイヤーを一度にアクティブ化することができ、レイヤーが `KC_TRNS` を使ってキーの押下を下のレイヤーに渡すことが一般的です。レイヤーの詳細については、[キーマップの概要](ja/keymap.md#keymap-and-layers)を見てください。MO()、LM()、TT() あるいは LT() を使って一時的なレイヤーの切り替えを使う場合、上のレイヤーのキーを透過にするようにしてください。さもないと意図したように動作しないかもしれません。
* `DF(layer)` - デフォルトレイヤーを切り替えます。デフォルトレイヤーは、他のレイヤーがその上に積み重なっている、常にアクティブな基本レイヤーです。デフォルトレイヤーの詳細については以下を見てください。これは QWERTY から Dvorak レイアウトに切り替えるために使うことができます。(これは一時的な切り替えであり、キーボードの電源が切れるまでしか持続しないことに注意してください。デフォルトレイヤーを永続的に変更するには、[process_record_user](ja/custom_quantum_functions.md#programming-the-behavior-of-any-keycode) 内で `set_single_persistent_default_layer` 関数を呼び出すなど、より深いカスタマイズが必要です。)
* `MO(layer)` - 一時的に*レイヤー*をアクティブにします。キーを放すとすぐに、レイヤーは非アクティブになります。
* `LM(layer, mod)` - (`MO` のように)一時的に*レイヤー*をアクティブにしますが、モディファイア *mod* がアクティブな状態です。layer 0-15 と、左モディファイアのみをサポートします: `MOD_LCTL`、`MOD_LSFT`、`MOD_LALT`、`MOD_LGUI` (`KC_` の代わりに `MOD_` 定数を使うことに注意してください)。これらのモディファイアは、例えば `LM(_RAISE, MOD_LCTL | MOD_LALT)` のように、ビット単位の OR を使って組み合わせることができます。
* `LT(layer, kc)` - ホールドされた時に*レイヤー*を一時的にアクティブにし、タップされた時に *kc* を送信します。layer 0-15 のみをサポートします。
* `OSL(layer)` - 次のキーが押されるまで、一時的に*レイヤー*をアクティブにします。詳細と追加機能については、[ワンショットキー](ja/one_shot_keys.md)を見てください。
* `TG(layer)` - *レイヤー*を切り替えます。非アクティブな場合はアクティブにし、逆も同様です。
* `TO(layer)` - *レイヤー*をアクティブにし、他の全てのレイヤー(デフォルトレイヤーを除く)を非アクティブにします。この関数は特別です。1つのレイヤーをアクティブなレイヤースタックに追加/削除する代わりに、現在のアクティブなレイヤーを完全に置き換え、唯一上位のレイヤーを下位のレイヤーで置き換えることができるからです。これはキーダウンで(キーが押されるとすぐに)アクティブになります。
* `TT(layer)` - レイヤーのタップ切り替え。キーを押したままにすると*レイヤー*がアクティブにされ、放すと非アクティブになります (`MO` 風)。繰り返しタップすると、レイヤーはオンあるいはオフを切り替えます (`TG` 風)。デフォルトでは5回のタップが必要ですが、`TAPPING_TOGGLE` を定義することで変更することができます -- 例えば、2回のタップだけで切り替えるには、`#define TAPPING_TOGGLE 2` を定義します。
## 注意事項
現在のところ、`LT()` と `MT()` は[基本的なキーコードセット](ja/keycodes_basic.md)に制限されています。つまり、`LCTL()`、`KC_TILD` あるいは `0xFF` より大きなキーコードを使うことができません。レイヤータップあるいはモッドタップのキーコードの一部として指定されたモディファイアは無視されます。タップしたキーコードにモディファイアを適用する必要がある場合は、[タップダンス](ja/feature_tap_dance.md#example-5-using-tap-dance-for-advanced-mod-tap-and-layer-tap-keys)を使うことができます。
さらに、モッドタップあるいはレイヤータップで少なくとも1つの右手用のモディファイアが指定された場合、指定された全てのモディファイアが右手用になるため、2つをうまく組み合わせて一致させることはできません。
# レイヤーの使用
レイヤーを切り替える時は注意してください。(キーボードを取り外さずに)そのレイヤーを非アクティブにすることができずレイヤーから移動できなくなる可能性があります。最も一般的な問題を避けるためのガイドラインを作成しました。
## 初心者
QMK を使い始めたばかりの場合は、全てを単純にしたいでしょう。レイヤーをセットアップする時は、これらのガイドラインに従ってください:
* デフォルトの "base" レイヤーとして、layer 0 をセットアップします。これは通常の入力レイヤーであり、任意のレイアウト (qwerty、dvorak、colemak など)にすることができます。通常はキーボードのキーのほとんどまたは全てが定義されているため、これを最下位のレイヤーとして設定することが重要です。そうすることで、もしそれが他のレイヤーの上 (つまりレイヤー番号が大きい)にある場合の影響を防ぎます。
* layer 0 をルートとして、レイヤーを "ツリー" レイアウトに配置します。他の複数のレイヤーから同じレイヤーに行こうとしないでください。
* 各レイヤーのキーマップでは、より高い番号のレイヤーのみを参照します。レイヤーは最大の番号(最上位)のアクティブレイヤーから処理されるため、下位レイヤーの状態を変更するのは難しくエラーが発生しやすくなります。
## 中級ユーザ
複数の基本レイヤーが必要な場合があります。例えば、QWERTY と Dvorak を切り替える場合、国ごとに異なるレイアウトを切り替える場合、あるいは異なるビデオゲームごとにレイアウトを切り替える場合などです。基本レイヤーは常に最小の番号のレイヤーである必要があります。複数の基本レイヤーがある場合、常にそれらを相互排他的に扱う必要があります。1つの基本レイヤーがオンの場合、他をオフにします。
## 上級ユーザ
レイヤーがどのように動作し、何ができるかを理解したら、より創造的になります。初心者のセクションで列挙されている規則は、幾つかの巧妙な詳細を回避するのに役立ちますが、特に超コンパクトなキーボードのユーザにとって制約になる場合があります。レイヤーの仕組みを理解することで、レイヤーをより高度な方法で使うことができます。
レイヤーは番号順に上に積み重なっています。キーの押下の動作を決定する時に、QMK は上から順にレイヤーを走査し、`KC_TRNS` に設定されていない最初のアクティブなレイヤーに到達すると停止します。結果として、現在のレイヤーよりも数値的に低いレイヤーをアクティブにし、現在のレイヤー(あるいはアクティブでターゲットレイヤーよりも高い別のレイヤー)に `KC_TRNS` 以外のものがある場合、それが送信されるキーであり、アクティブ化したばかりのレイヤー上のキーではありません。これが、ほとんどの人の "なぜレイヤーが切り替わらないのか" 問題の原因です。
場合によっては、マクロ内あるいはタップダンスルーチンの一部としてレイヤーを切り替えほうが良いかもしれません。`layer_on` はレイヤーをアクティブにし、`layer_off` はそれを非アクティブにします。もっと多くのレイヤーに関する関数は、[action_layer.h](https://github.com/qmk/qmk_firmware/blob/master/tmk_core/common/action_layer.h) で見つけることができます。
# 修飾キー :id=modifier-keys
以下のようにキーコードとモディファイアを組み合わせることができます。押すと、モディファイアのキーダウンイベントが送信され、次に `kc` のキーダウンイベントが送信されます。放すと、`kc` のキーアップイベントが送信され、次にモディファイアのキーアップイベントが送信されます。
| キー | エイリアス | 説明 |
|----------|-------------------------------|----------------------------------------------------|
| `LCTL(kc)` | `C(kc)` | 左 Control を押しながら `kc` を押します。 |
| `LSFT(kc)` | `S(kc)` | 左 Shift を押しながら `kc` を押します。 |
| `LALT(kc)` | `A(kc)`, `LOPT(kc)` | 左 Alt を押しながら `kc`を押します。 |
| `LGUI(kc)` | `G(kc)`, `LCMD(kc)`, `LWIN(kc)` | 左 GUI を押しながら `kc` を押します。 |
| `RCTL(kc)` | | 右 Control を押しながら `kc` を押します。 |
| `RSFT(kc)` | | 右 Shift を押しながら `kc` を押します。 |
| `RALT(kc)` | `ROPT(kc)`, `ALGR(kc)` | 右 Alt を押しながら `kc` を押します。 |
| `RGUI(kc)` | `RCMD(kc)`, `LWIN(kc)` | 右 GUI を押しながら `kc` を押します。 |
| `SGUI(kc)` | `SCMD(kc)`, `SWIN(kc)` | 左 Shift と左 GUI を押しながら `kc` を押します。 |
| `LCA(kc)` | | 左 Control と左 Alt を押しながら `kc` を押します。 |
| `LCAG(kc)` | | 左 Control、左 Alt、左 GUI を押しながら `kc` を押します。 |
| `MEH(kc)` | | 左 Control、左 Shift、左 Alt を押しながら `kc` を押します。 |
| `HYPR(kc)` | | 左 Control、左 Shift、左 Alt、左 GUI を押しながら `kc` を押します。 |
また、それらを繋げることができます。例えば、`LCTL(LALT(KC_DEL))` は1回のキー押下で Control+Alt+Delete を送信するキーを作成します。
# 過去の内容
このページには多くの機能が含まれていました。このページを構成していた多くのセクションをそれぞれのページに移動しました。これより下は全て単なるリダイレクトであるため、web上で古いリンクをたどっている人は探しているものを見つけることができます。
## モッドタップ :id=mod-tap
* [モッドタップ](ja/mod_tap.md)
## ワンショットキー :id=one-shot-keys
* [ワンショットキー](ja/one_shot_keys.md)
## タップホールド設定オプション :id=tap-hold-configuration-options
* [タップホールド設定オプション](ja/tap_hold.md)

328
docs/ja/feature_audio.md Normal file
View File

@ -0,0 +1,328 @@
# オーディオ
<!---
original document: 5d5ff80:docs/feature_audio.md
git diff 5d5ff80 HEAD -- docs/feature_audio.md | cat
-->
キーボードは音を出すことができますPlanck、Preonic あるいは特定の PWM 対応ピンにアクセスできる AVR キーボードがある場合は、単純なスピーカーを接続してビープ音を鳴らすことができます。これらのビープ音を使ってレイヤーの変化、モディファイア、特殊キーを示したり、あるいは単にイカした8ビットの曲を鳴らすことができます。
最大2つの同時オーディオ音声がサポートされ、1つはタイマー1によってもう一つはタイマー3によって駆動されます。以下のピンは config.h の中でオーディオ出力として定義することができます:
Timer 1:
`#define B5_AUDIO`
`#define B6_AUDIO`
`#define B7_AUDIO`
Timer 3:
`#define C4_AUDIO`
`#define C5_AUDIO`
`#define C6_AUDIO`
`rules.mk``AUDIO_ENABLE = yes` を追加すると、他の設定無しで自動的に有効になる幾つかの異なるサウンドがあります:
```
STARTUP_SONG // キーボードの起動時に再生 (audio.c)
GOODBYE_SONG // RESET キーを押すと再生 (quantum.c)
AG_NORM_SONG // AG_NORM キーを押すと再生 (quantum.c)
AG_SWAP_SONG // AG_SWAP キーを押すと再生 (quantum.c)
CG_NORM_SONG // CG_NORM キーを押すと再生 (quantum.c)
CG_SWAP_SONG // CG_SWAP キーを押すと再生 (quantum.c)
MUSIC_ON_SONG // 音楽モードがアクティブになると再生 (process_music.c)
MUSIC_OFF_SONG // 音楽モードが非アクティブになると再生 (process_music.c)
CHROMATIC_SONG // 半音階音楽モードが選択された時に再生 (process_music.c)
GUITAR_SONG // ギター音楽モードが選択された時に再生 (process_music.c)
VIOLIN_SONG // バイオリン音楽モードが選択された時に再生 (process_music.c)
MAJOR_SONG // メジャー音楽モードが選択された時に再生 (process_music.c)
```
`config.h` の中で以下のような操作を行うことで、デフォルトの曲を上書きすることができます:
```c
#ifdef AUDIO_ENABLE
#define STARTUP_SONG SONG(STARTUP_SOUND)
#endif
```
サウンドの完全なリストは、[quantum/audio/song_list.h](https://github.com/qmk/qmk_firmware/blob/master/quantum/audio/song_list.h) で見つかります - このリストに自由に追加してください!利用可能な音は [quantum/audio/musical_notes.h](https://github.com/qmk/qmk_firmware/blob/master/quantum/audio/musical_notes.h) で見つかります。
特定の時にカスタムサウンドを再生するために、以下のように曲を定義することができます(ファイルの上部付近に):
```c
float my_song[][2] = SONG(QWERTY_SOUND);
```
以下のように曲を再生します:
```c
PLAY_SONG(my_song);
```
または、以下のようにループで再生することができます:
```c
PLAY_LOOP(my_song);
```
オーディオがキーボードに組み込まれていない時に問題が起きる事を避けるために、`#ifdef AUDIO_ENABLE` / `#endif` で全てのオーディオ機能をくるむことをお勧めします。
オーディオで利用可能なキーコードは以下の通りです:
* `AU_ON` - オーディオ機能をオン
* `AU_OFF` - オーディオ機能をオフ
* `AU_TOG` - オーディオ機能を切り替え
!> これらのキーコードは全てのオーディオ機能をオンおよびオフにします。オフにするとオーディオフィードバック、オーディオクリック、音楽モードなどが完全に無効になります。
## ARM オーディオボリューム
ARM デバイスの場合、DAC サンプル値を調整できます。キーボードがあなたやあなたの同僚にとって騒々しい場合、`config.h` 内の `DAC_SAMPLE_MAX` を使って最大量を設定することができます:
```c
#define DAC_SAMPLE_MAX 65535U
```
## 音楽モード
音楽モードは列を半音階に、行をオクターブにマップします。これは格子配列キーボードで最適に動作しますが、他のものでも動作させることができます。`0xFF` 未満の全てのキーコードはブロックされるため、音の演奏中は入力できません - 特別なキー/mod があればそれらは引き続き動作します。これを回避するには、音楽モードを有効にする前(あるいは後)で、KC_NO を使って別のレイヤーにジャンプします。
メモリの問題により、録音は実験的です - 奇妙な動作が発生した場合は、キーボードの取り外しと再接続で問題が解決するでしょう。
利用可能なキーコード:
* `MU_ON` - 音楽モードをオン
* `MU_OFF` - 音楽モードをオフ
* `MU_TOG` - 音楽モードの切り替え
* `MU_MOD` - 音楽モードの循環
* `CHROMATIC_MODE` - 半音階。行はオクターブを変更します
* `GUITAR_MODE` - 半音階、ただし行は弦を変更します (+5 階)
* `VIOLIN_MODE` - 半音階。ただし行は弦を変換します (+7 階)
* `MAJOR_MODE` - メージャースケール
音楽モードでは、以下のキーコードは動作が異なり、通過しません:
* `LCTL` - 録音を開始
* `LALT` - 録音を停止/演奏を停止
* `LGUI` - 録音を再生
* `KC_UP` - 再生をスピードアップ
* `KC_DOWN` - 再生をスローダウン
ピッチ標準 (`PITCH_STANDARD_A`) はデフォルトで 440.0f です - これを変更するには、`config.h` に以下のようなものを追加します:
#define PITCH_STANDARD_A 432.0f
音楽モードも完全に無効にすることができます。コントローラの容量が足りなくて困っている場合に役に立ちます。無効にするには、これを `config.h` に追加します:
#define NO_MUSIC_MODE
### 音楽マスク
デフォルトで、`MUSIC_MASK` は `keycode < 0xFF` に設定されます。これは、`0xFF` 未満のキーコードが音に変換され、何も出力しないことを意味します。`config.h` の中で以下のものを定義することで、これを変更することができます:
#define MUSIC_MASK keycode != KC_NO
これは全てのキーコードを捕捉します - これは、キーボードを再起動するまで、音楽モードで動けなくなることに注意してください!
どのキーコードを引き続き処理するかを制御する、より高度な方法については、`<keyboard>.c` の中の `music_mask_kb(keycode)` および `keymap.c` の中の `music_mask_user(keycode)` を使うことができます:
bool music_mask_user(uint16_t keycode) {
switch (keycode) {
case RAISE:
case LOWER:
return false;
default:
return true;
}
}
false を返すものはマスクの一部では無く、常に処理されます。
### 音楽マップ
デフォルトでは、音楽モードはキーのスケールを決定するために列と行を使います。キーボードレイアウトに一致する長方形のマトリックスを使うキーボードの場合、これで十分です。しかし、(Planck Rev6 あるいは多くの分割キーボードなどのように)より複雑なマトリックスを使うキーボードの場合、非常に歪んだ感じを受けることになります。
しかしながら、音楽マップオプションにより、音楽モードのためにスケーリングを再マップすることができるため、レイアウトに一致し、より自然になります。
この機能を使うには、`#define MUSIC_MAP` を `config.h` ファイルに追加します。そして、`キーボードの名前.c` または `keymap.c``uint8_t music_map` を追加します。
```c
const uint8_t music_map[MATRIX_ROWS][MATRIX_COLS] = LAYOUT_ortho_4x12(
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
);
```
キーボードが使用する `LAYOUT` マクロも使用したいでしょう。これは正しいキーの位置にマップします。キーボードレイアウトの左下から開始し、右に移動してさらに上に移動します。完全なマトリックスができるまで、全てのエントリを入力します。
これを実装する方法の例として、[Planck Keyboard](https://github.com/qmk/qmk_firmware/blob/e9ace1487887c1f8b4a7e8e6d87c322988bec9ce/keyboards/planck/planck.c#L24-L29) を見ることができます。
## オーディオクリック
これは、ボタンを押すたびにクリック音を追加し、キーボードからのクリック音をシミュレートします。キーを押すたびにわずかに音が異なるため、すばやく入力しても長い単一の音のようには聞こえません。
* `CK_TOGG` - ステータスを切り替えます (有効にされた場合、音を再生します)
* `CK_ON` - オーディオクリックをオンにします (音を再生します)
* `CK_OFF` - オーディオクリックをオフにします (音を再生しません)
* `CK_RST` - 周波数をデフォルトの状態に再設定します (デフォルトの周波数で音を再生します)
* `CK_UP` - クリック音の周波数を増やします (新しい周波数で音を再生します)
* `CK_DOWN` - クリック音の周波数を減らします (新しい周波数で音を再生します)
容量を節約するためにデフォルトではこの機能は無効です。有効にするには、`config.h` に以下を追加します:
#define AUDIO_CLICKY
これらの値を定義することで、デフォルト、最小および最大周波数、ステッピングおよび組み込みのランダム性を設定することができます:
| オプション | デフォルト値 | 説明 |
|--------|---------------|-------------|
| `AUDIO_CLICKY_FREQ_DEFAULT` | 440.0f | クリック音のデフォルト/開始音の周波数を設定します。 |
| `AUDIO_CLICKY_FREQ_MIN` | 65.0f | 最小周波数を設定します (60f 未満は少しバグがあります)。 |
| `AUDIO_CLICKY_FREQ_MAX` | 1500.0f | 最大周波数を設定します。高すぎると同僚があなたを攻撃する可能性があります。 |
| `AUDIO_CLICKY_FREQ_FACTOR` | 1.18921f | UP/DOWN キーコードのステップを設定します。これは掛け算の係数です。デフォルトでは、音楽のマイナーの1/3ずつ、周波数を上げ/下げします。 |
| `AUDIO_CLICKY_FREQ_RANDOMNESS` | 0.05f | クリックのランダム性の係数を設定します。これを `0f` に設定すると各クリックが同一になり、`1.0f` に設定するとこの音は90年代のコンピュータ画面のスクロール/タイピングの効果があります。 |
| `AUDIO_CLICKY_DELAY_DURATION` | 1 | 1がテンポの 1/16、または64分音符である整数音符の長さ (実装の詳細については、`quantum/audio/musical_notes.h` を見てください)。メインのクリック効果は、この時間だけ遅れます。これらを6-12前後の値に調整すると、うるさいスイッチの補正に役立ちます。 |
## MIDI 機能
これはまだ WIP ですが、何が起きているかを見るために、`quantum/process_keycode/process_midi.c` を調べてください。Makefile から有効にします。
## オーディオキーコード
| キー | エイリアス | 説明 |
|----------------|---------|----------------------------------|
| `AU_ON` | | オーディオモードオン |
| `AU_OFF` | | オーディオモードオフ |
| `AU_TOG` | | オーディオモードを切り替えます |
| `CLICKY_TOGGLE` | `CK_TOGG` | オーディオクリックモードを切り替えます |
| `CLICKY_UP` | `CK_UP` | クリック音の周波数を増やします |
| `CLICKY_DOWN` | `CK_DOWN` | クリック音の周波数を減らします |
| `CLICKY_RESET` | `CK_RST` | 周波数をデフォルトに再設定します |
| `MU_ON` | | 音楽モードをオンにします |
| `MU_OFF` | | 音楽モードをオフにします |
| `MU_TOG` | | 音楽モードを切り替えます |
| `MU_MOD` | | 音楽モードを循環します |
<!-- FIXME: this formatting needs work
## Audio
```c
#ifdef AUDIO_ENABLE
AU_ON,
AU_OFF,
AU_TOG,
#ifdef FAUXCLICKY_ENABLE
FC_ON,
FC_OFF,
FC_TOG,
#endif
// Music mode on/off/toggle
MU_ON,
MU_OFF,
MU_TOG,
// Music voice iterate
MUV_IN,
MUV_DE,
#endif
```
### Midi
#if !MIDI_ENABLE_STRICT || (defined(MIDI_ENABLE) && defined(MIDI_BASIC))
MI_ON, // send midi notes when music mode is enabled
MI_OFF, // don't send midi notes when music mode is enabled
#endif
MIDI_TONE_MIN,
MIDI_TONE_MAX
MI_C = MIDI_TONE_MIN,
MI_Cs,
MI_Db = MI_Cs,
MI_D,
MI_Ds,
MI_Eb = MI_Ds,
MI_E,
MI_F,
MI_Fs,
MI_Gb = MI_Fs,
MI_G,
MI_Gs,
MI_Ab = MI_Gs,
MI_A,
MI_As,
MI_Bb = MI_As,
MI_B,
MIDI_TONE_KEYCODE_OCTAVES > 1
where x = 1-5:
MI_C_x,
MI_Cs_x,
MI_Db_x = MI_Cs_x,
MI_D_x,
MI_Ds_x,
MI_Eb_x = MI_Ds_x,
MI_E_x,
MI_F_x,
MI_Fs_x,
MI_Gb_x = MI_Fs_x,
MI_G_x,
MI_Gs_x,
MI_Ab_x = MI_Gs_x,
MI_A_x,
MI_As_x,
MI_Bb_x = MI_As_x,
MI_B_x,
MI_OCT_Nx 1-2
MI_OCT_x 0-7
MIDI_OCTAVE_MIN = MI_OCT_N2,
MIDI_OCTAVE_MAX = MI_OCT_7,
MI_OCTD, // octave down
MI_OCTU, // octave up
MI_TRNS_Nx 1-6
MI_TRNS_x 0-6
MIDI_TRANSPOSE_MIN = MI_TRNS_N6,
MIDI_TRANSPOSE_MAX = MI_TRNS_6,
MI_TRNSD, // transpose down
MI_TRNSU, // transpose up
MI_VEL_x 1-10
MIDI_VELOCITY_MIN = MI_VEL_1,
MIDI_VELOCITY_MAX = MI_VEL_9,
MI_VELD, // velocity down
MI_VELU, // velocity up
MI_CHx 1-16
MIDI_CHANNEL_MIN = MI_CH1
MIDI_CHANNEL_MAX = MI_CH16,
MI_CHD, // previous channel
MI_CHU, // next channel
MI_ALLOFF, // all notes off
MI_SUS, // sustain
MI_PORT, // portamento
MI_SOST, // sostenuto
MI_SOFT, // soft pedal
MI_LEG, // legato
MI_MOD, // modulation
MI_MODSD, // decrease modulation speed
MI_MODSU, // increase modulation speed
#endif // MIDI_ADVANCED
-->

View File

@ -0,0 +1,135 @@
# 自動シフト: なぜシフトキーが必要ですか?
<!---
original document: 5d5ff80:docs/feature_auto_shift.md
git diff 5d5ff80 HEAD -- docs/feature_auto_shift.md | cat
-->
キーをタップすると、その文字を取得します。キーをタップするが、*わずかに*長く押し続けると、シフト状態になります。ほら!シフトキーは必要ありません!
## なぜ自動シフトなのですか?
多くの人が腱鞘炎などの症状に苦しんでいます。一般的な原因は、指を繰り返し長い距離を伸ばすことです。私たちはキーボード上でシフトキーに手を伸ばすためにあまりにも頻繁に小指を伸ばします。自動シフトキーはそれを軽減しようとしています。
## どのように動作しますか?
キーをタップする時に、キーを放す前にほんの短い間押したままにします。この押したままにする時間は全ての人にとって異なる長さです。自動シフトは、定数 `AUTO_SHIFT_TIMEOUT` を定義し、これは普段の押された状態の時間の2倍に通常は設定されます。タイマーは、キーを押す時に開始され、キーを放す時に止まります。押された時間が `AUTO_SHIFT_TIMEOUT` 以上の場合に、キーのシフトバージョンが発行されます。時間が `AUTO_SHIFT_TIMEOUT` 時間よりも短い場合は、通常の状態が発行されます。
## 自動シフトには制限がありますか?
残念ながらあります。
1. キーリピートが動作しなくなります。例えば、20個の 'a' 文字が必要な場合、'a' キーを1、2秒押し続けるかもしれません。オペレーティングシステムに押されたキーの状態を発行する代わりに押された時間を計るので、自動シフトでは動作しません。
2. シフトをするつもりがない時にシフトされた文字を取得し、シフトしたい時にそうではない他の文字を取得するでしょう。これは結局は練習になります。急いでいる時は、シフトされたバージョンのために十分長くキーを押したと思うかもしれませんが、そうではありませんでした。一方、キーをタップしていると思うかもしれませんが、実際には予想よりも少し長い間押していました。
## どうやって自動シフトを有効にしますか?
キーマップフォルダの `rules.mk` に追加します:
AUTO_SHIFT_ENABLE = yes
`rules.mk` が存在しない場合、それを作成することができます。
そして自動シフトキーを有効にした新しいファームウェアをコンパイルしてインストールします!以上です!
## モディファイア
デフォルトで、1つ以上のモディファイアと一緒にキーが押されると自動シフトは無効になります。従って、本当に長い間 Ctrl+A を保持しても、Ctrl+Shift+A と同じではありません。
`config.h` に定義を追加することで、モディファイアの自動シフトを再度有効にすることができます
```c
#define AUTO_SHIFT_MODIFIERS
```
この場合、`AUTO_SHIFT_TIMEOUT` を超えて押された Ctrl+A は Ctrl+Shift+A として送信されます
## 自動シフトの設定
必要に応じて、自動シフトの挙動を変更することができる幾つかの設定があります。キーマップフォルダにある `config.h` に様々な変数を設定することで行われます。`config.h` ファイルが存在しない場合、それを作成することができます。
```c
#pragma once
#define AUTO_SHIFT_TIMEOUT 150
#define NO_AUTO_SHIFT_SPECIAL
```
### AUTO_SHIFT_TIMEOUT (単位: ミリ秒)
これは、シフトされた状態を取得するためにどれだけ長くキーを押し続けなければならないかを制御します。
明らかにこれは人によって異なります。一般的な人にとって、135 から 150 の設定がうまく機能します。ただし、少なくとも 175 の値から開始する必要があります。これはデフォルト値です。その後、ここから下げていきます。間違って検出することなくシフトされた状態を取得するのに必要な、最も短い時間を得るという考え方です。
完璧に動作するまで、いろいろな値を試してみます。多くの人は、全てが所定の値で適切に動作するものの、時々、1つあるいは2つのキーがシフト状態を発行することが分かるでしょう。これは単に習慣と、幾つかのキーを他のキーよりも少し長く押し続けることによるものです。この値を見つけたら、問題のキーを通常よりも少し早くタップするとともに、その値を設定します。
?> 自動シフトには、この値を素早く取得するのに役立つ3つの特別なキーがあります。詳細は「自動シフトのセットアップ」を見てください
### NO_AUTO_SHIFT_SPECIAL (単純にこのように定義します)
-\_, =+, [{, ]}, ;:, '", ,<, .> および /? を含む特殊キーを自動シフトしません
### NO_AUTO_SHIFT_NUMERIC (単純にこのように定義します)
0から9までの数字キーを自動シフトしません。
### NO_AUTO_SHIFT_ALPHA (単純にこのように定義します)
AからZを含むアルファベット文字を自動シフトしません。
## 自動シフトセットアップの使用
これにより、`AUTO_SHIFT_TIMEOUT` で設定している時間を一時的に増減させたり報告するために、3つのキーを定義することができます。
### セットアップ
3つのキーを一時的にキーマップにマップします:
| キー名 | 説明 |
|----------|-----------------------------------------------------|
| KC_ASDN | 自動シフトタイムアウト変数を下げる |
| KC_ASUP | 自動シフトタイムアウト変数を上げる |
| KC_ASRP | 現在の自動シフトタイムアウト値を報告する |
| KC_ASON | 自動シフト機能をオンにする |
| KC_ASOFF | 自動シフト機能をオフにする |
| KC_ASTG | 自動シフト機能の状態を切り替える |
新しいファームウェアをコンパイルしてアップロードします。
### 使い方
これらのテスト中は、完全に普段通り入力する必要があり、意図的にシフトされたキーを使わずに入力するように注意する必要があります。
1. アルファベットの複数の文を入力します。
2. 大文字に注意してください。
3. 大文字が存在しない場合は、自動シフトタイムアウト値を減らすために `KC_ASDN` にマップしたキーを押し、ステップ1に戻ります。
4. 大文字が幾つかある場合は、押す時間を短くしてこれらのキーをタップする必要があるか、あるいはタイムアウトを増やす必要があるかを決定します。
5. タイムアウトを増やすことに決めた場合は、`KC_ASUP` にマップしたキーを押し、ステップ1に戻ります。
6. 結果に満足したら、`KC_ASRP` にマップしたキーを押します。キーボードは `AUTO_SHIFT_TIMEOUT` の値を自動的に入力します。
7. 報告された値で `config.h``AUTO_SHIFT_TIMEOUT` を更新します。
8. `config.h` から `AUTO_SHIFT_SETUP` を削除します。
9. `KC_ASDN`、`KC_ASUP` および `KC_ASRP` のキーバインディングを削除します。
10. 新しいファームウェアをコンパイルしてアップロードします。
#### 実行例
hello world. my name is john doe. i am a computer programmer playing with
keyboards right now.
[KC_ASDN を何度か押します]
heLLo woRLd. mY nAMe is JOHn dOE. i AM A compUTeR proGRaMMER PlAYiNG witH
KEYboArDS RiGHT NOw.
[KC_ASUP を数回押します]
hello world. my name is john Doe. i am a computer programmer playing with
keyboarDs right now.
[KC_ASRPを押します]
115
キーボードは現在の `AUTO_SHIFT_TIMEOUT` 値を表す `115` を入力しました。これで設定が完了しました!テスト中に現れる *D* キーを少し練習してください。それで完璧です。

View File

@ -0,0 +1,253 @@
# バックライト
<!---
original document: 5d5ff80:docs/feature_backlight.md
git diff 5d5ff80 HEAD -- docs/feature_backlight.md | cat
-->
多くのキーボードは、キースイッチを貫通して配置されたり、キースイッチの下に配置された個々の LED によって、バックライトキーをサポートします。この機能は通常スイッチごとに単一の色しか使用できないため、[RGB アンダーグロー](ja/feature_rgblight.md)および [RGB マトリックス](ja/feature_rgb_matrix.md)機能のどちらとも異なりますが、キーボードに複数の異なる単一色の LED を取り付けることは当然可能です。
QMK は *パルス幅変調*(*Pulse Width Modulation*) すなわち PWM として知られている技術で急速にオンおよびオフを切り替えることで、これらの LED の輝度を制御できます。PWM 信号のデューティサイクルを変えることで、調光の錯覚を起こすことができます。
MCU は、GPIO ピンにはそんなに電流を供給できません。MCU から直接バックライトに給電せずに、バックライトピンは LED への電力を切り替えるトランジスタあるいは MOSFET に接続されます。
## 機能の設定
ほとんどのキーボードではバックライトをサポートしている場合にデフォルトで有効になっていますが、もし機能しない場合は `rules.mk` が以下を含んでいることを確認してください:
```makefile
BACKLIGHT_ENABLE = yes
```
## キーコード
有効にすると、以下のキーコードを使ってバックライトレベルを変更することができます。
| キー | 説明 |
|---------|------------------------------------------|
| `BL_TOGG` | バックライトをオンあるいはオフにする |
| `BL_STEP` | バックライトレベルを循環する |
| `BL_ON` | バックライトを最大輝度に設定する |
| `BL_OFF` | バックライトをオフにする |
| `BL_INC` | バックライトレベルを上げる |
| `BL_DEC` | バックライトレベルを下げる |
| `BL_BRTG` | バックライトの明滅動作を切り替える |
## バックライト関数群
| 関数 | 説明 |
|----------|-----------------------------------------------------------|
| `backlight_toggle()` | バックライトをオンあるいはオフにする |
| `backlight_enable()` | バックライトをオンにする |
| `backlight_disable()` | バックライトをオフにする |
| `backlight_step()` | バックライトレベルを循環する |
| `backlight_increase()` | バックライトレベルを上げる |
| `backlight_decrease()` | バックライトレベルを下げる |
| `backlight_level(x)` | バックライトのレベルを特定のレベルに設定する |
| `get_backlight_level()` | 現在のバックライトレベルを返す |
| `is_backlight_enabled()` | バックライトが現在オンかどうかを返す |
### バックライトの明滅動作の関数群
| 関数 | 説明 |
|----------|---------------------------------------------------|
| `breathing_toggle()` | バックライトの明滅動作をオンまたはオフにする |
| `breathing_enable()` | バックライトの明滅動作をオンにする |
| `breathing_disable()` | バックライトの明滅動作をオフにする |
## ドライバの設定
どのドライバを使うかを選択するには、以下を使って `rules.mk` を設定します:
```makefile
BACKLIGHT_DRIVER = software # 有効なドライバの値は 'pwm,software,no' です
```
各ドライバについてのヘルプは以下を見てください。
## 共通のドライバ設定
バックライトの挙動を変更するには、`config.h` の中で以下の `#define` をします:
| 定義 | デフォルト | 説明 |
|---------------------|-------------|--------------------------------------------------------------------------------------|
| `BACKLIGHT_LEVELS` | `3` | 輝度のレベルの数 (オフを除いて最大 31) |
| `BACKLIGHT_CAPS_LOCK` | *定義なし* | バックライトを使って Caps Lock のインジケータを有効にする (専用 LED の無いキーボードのため) |
| `BACKLIGHT_BREATHING` | *定義なし* | サポートされる場合は、バックライトの明滅動作を有効にする |
| `BREATHING_PERIOD` | `6` | 各バックライトの "明滅" の長さ(秒) |
| `BACKLIGHT_ON_STATE` | `0` | バックライトが "オン" の時のバックライトピンの状態 - high の場合は `1`、low の場合は `0` |
### バックライトオン状態
ほとんどのバックライトの回路は N チャンネルの MOSFET あるいは NPN トランジスタによって駆動されます。これは、トランジスタを*オン*にして LED を点灯させるには、ゲートまたはベースに接続されているバックライトピンを *high* に駆動する必要があることを意味します。
ただし、P チャンネルの MOSFET あるいは PNP トランジスタが使われる場合があります。この場合、トランジスタがオンの時、ピンは代わりに *low* で駆動されます。
この機能は `BACKLIGHT_ON_STATE` 定義することでキーボードレベルで設定されます。
## AVR ドライバ
AVR ボードでは、デフォルトのドライバは現在のところ最善のシナリオを選択するために構成を探っています。ドライバはデフォルトで設定されますが、rules.mk 内の同等の設定は以下の通りです:
```makefile
BACKLIGHT_DRIVER = pwm
```
### 注意事項
ハードウェア PWM は以下の表に従ってサポートされます:
| バックライトピン | AT90USB64/128 | ATmega16/32U4 | ATmega16/32U2 | ATmega32A | ATmega328P |
|-------------|-------------|-------------|-------------|---------|----------|
| `B1` | | | | | Timer 1 |
| `B2` | | | | | Timer 1 |
| `B5` | Timer 1 | Timer 1 | | | |
| `B6` | Timer 1 | Timer 1 | | | |
| `B7` | Timer 1 | Timer 1 | Timer 1 | | |
| `C4` | Timer 3 | | | | |
| `C5` | Timer 3 | | Timer 1 | | |
| `C6` | Timer 3 | Timer 3 | Timer 1 | | |
| `D4` | | | | Timer 1 | |
| `D5` | | | | Timer 1 | |
他の全てのピンはソフトウェア PWM を使います。[オーディオ](ja/feature_audio.md)機能が無効あるいは1つのタイマだけを使っている場合は、ハードウェアタイマによってバックライト PWM を引き起こすことができます:
| オーディオピン | オーディオタイマ | ソフトウェア PWM タイマ |
|---------|-----------|------------------|
| `C4` | Timer 3 | Timer 1 |
| `C5` | Timer 3 | Timer 1 |
| `C6` | Timer 3 | Timer 1 |
| `B5` | Timer 1 | Timer 3 |
| `B6` | Timer 1 | Timer 3 |
| `B7` | Timer 1 | Timer 3 |
両方のタイマーがオーディオのために使われている場合、バックライト PWM はハードウェアタイマを使いませんが、代わりにマトリックススキャンの間に引き起こされます。この場合、PWM の計算は十分なタイミングの精度で呼ばれないかもしれないため、バックライトの明滅はサポートされず、バックライトもちらつくかもしれません。
### AVR 設定
バックライトの挙動を変更するには、`config.h` の中で以下の `#define` をします:
| 定義 | デフォルト | 説明 |
|---------------------|-------------|--------------------------------------------------------------------------------------------------------------|
| `BACKLIGHT_PIN` | `B7` | LED を制御するピン。自身のキーボードを設計している場合を除き、これを変更する必要はないはずです |
| `BACKLIGHT_PINS` | *定義なし* | 実験的: 詳細は以下を見てください |
| `BACKLIGHT_LEVELS` | `3` | 輝度のレベルの数 (オフを除いて最大 31) |
| `BACKLIGHT_CAPS_LOCK` | *定義なし* | バックライトを使って Caps Lock のインジケータを有効にする (専用 LED の無いキーボードのため) |
| `BACKLIGHT_BREATHING` | *定義なし* | サポートされる場合は、バックライトの明滅動作を有効にする |
| `BREATHING_PERIOD` | `6` | 各バックライトの "明滅" の長さ(秒) |
| `BACKLIGHT_ON_STATE` | `1` | バックライトが "オン" の時のバックライトピンの状態 - high の場合は `1`、low の場合は `0` |
### バックライトオン状態
ほとんどのバックライトの回路は N チャンネルの MOSFET あるいは NPN トランジスタによって駆動されます。これは、トランジスタを*オン*にして LED を点灯させるには、ゲートまたはベースに接続されているバックライトピンを *high* に駆動する必要があることを意味します。
ただし、P チャンネルの MOSFET あるいは PNP トランジスタが使われる場合があります。この場合、トランジスタがオンの時、ピンは代わりに *low* で駆動されます。
この機能は `BACKLIGHT_ON_STATE` 定義することでキーボードレベルで設定されます。
### 複数のバックライトピン
ほとんどのキーボードは、全てのバックライト LED を制御するたった1つのバックライトピンを持ちます (特にバックライトがハードウェア PWM ピンに接続されている場合)。
ソフトウェア PWM では、複数のバックライトピンを定義することができます。これらすべてのピンは PWM デューティサイクル時に同時にオンおよびオフになります。
この機能により、例えば Caps Lock LED (またはその他の制御可能な LED) の輝度を、バックライトの他の LED と同じレベルに設定することができます。Caps Lock の代わりに LCTRL をマップしていて、Caps Lock がオンの時に Caps Lock LED をアクティブにする代わりにバックライトの一部にする必要がある場合に便利です。
複数のバックライトピンをアクティブにするには、`config.h` に次のようなものを追加する必要があります:
```c
#define BACKLIGHT_LED_COUNT 2
#undef BACKLIGHT_PIN
#define BACKLIGHT_PINS { F5, B2 }
```
### ハードウェア PWM 実装
バックライト用にサポートされているピンを使う場合、QMK は PWM 信号を出力するように設定されたハードウェアタイマを使います。タイマーは 0 にリセットする前に `ICRx` (デフォルトでは `0xFFFF`) までカウントします。
希望の輝度が計算され、`OCRxx` レジスタ内に格納されます。カウンタがこの値まで達すると、バックライトピンは low になり、カウンタがリセットされると再び high になります。
このように `OCRxx` は基本的に LED のデューティサイクル、従って輝度を制御します。`0x0000` は完全にオフで、 `0xFFFF` は完全にオンです。
明滅動作の効果はカウンタがリセットされる(秒間あたりおよそ244回)たびに呼び出される `TIMER1_OVF_vect` の割り込みハンドラを登録することで可能になります。
このハンドラ内で、増分カウンタの値が事前に計算された輝度曲線にマップされます。明滅動作をオフにするには、割り込みを単純に禁止し、輝度を EEPROM に格納されているレベルに再設定します。
### タイマーにアシストされた PWM 実装
`BACKLIGHT_PIN` がハードウェアバックライトピンに設定されていない場合、QMK はソフトウェア割り込みを引き起こすように設定されているハードウェアタイマを使います。タイマーは 0 にリセットする前に `ICRx` (デフォルトでは `0xFFFF`) までカウントします。
0 に再設定すると、CPU は LED をオンにする OVF (オーバーフロー)割り込みを発火し、デューティサイクルを開始します。
希望の輝度が計算され、`OCRxx` レジスタ内に格納されます。カウンタがこの値に達すると、CPU は比較出力一致割り込みを発火し、LED をオフにします。
このように `OCRxx` は基本的に LED のデューティサイクル、従って輝度を制御します。 `0x0000` は完全にオフで、 `0xFFFF` は完全にオンです。
明滅の効果はハードウェア PWM 実装と同じです。
## ARM ドライバ
まだ初期段階ですが、ARM バックライトサポートは最終的に AVR と同等の機能を持つことを目指しています。ドライバはデフォルトで設定されますが、rules.mk 内の同等の設定は以下の通りです:
```makefile
BACKLIGHT_DRIVER = pwm
```
### 注意事項
現在のところ、ハードウェア PWM のみがサポートされ、タイマーはアシストされず、自動設定は提供されません。
?> STMF072 のバックライトサポートのテストは制限されています。人によって違うかもしれません。不明な場合は、rules.mk で `BACKLIGHT_ENABLE = no` を設定します。
### ARM 設定
バックライトの挙動を変更するには、`config.h` の中で以下の `#define` をします:
| 定義 | デフォルト | 説明 |
|------------------------|-------------|-------------------------------------------------------------------------------------------------------------|
| `BACKLIGHT_PIN` | `B7` | LED を制御するピン。自身のキーボードを設計している場合を除き、これを変更する必要はないはずです |
| `BACKLIGHT_PWM_DRIVER` | `PWMD4` | 使用する PWM ドライバ。ピンから PWM タイマへのマッピングについては、ST データシートを見てください。自身のキーボードを設計している場合を除き、これを変更する必要はないはずです |
| `BACKLIGHT_PWM_CHANNEL` | `3` | 使用する PWM チャンネル。ピンから PWM チャンネルへのマッピングについては、ST データシートを見てください。自身のキーボードを設計している場合を除き、これを変更する必要はないはずです |
| `BACKLIGHT_PAL_MODE` | `2` | 使用するピンの代替機能。ピンの AF マッピングについては ST データシートを見てください。自身のキーボードを設計している場合を除き、これを変更する必要はないはずです |
## Software PWM Driver :id=software-pwm-driver
他のキーボードのタスクを実行中に PWM をエミュレートすることにより、追加のプラットフォーム設定なしで最大のハードウェア互換性を提供します。トレードオフは、キーボードが忙しい時にバックライトが揺れる可能性があることです。有効にするには、rules.mk に以下を追加します:
```makefile
BACKLIGHT_DRIVER = software
```
### ソフトウェア PWM 設定
バックライトの挙動を変更するには、`config.h` の中で以下の `#define` をします:
| 定義 | デフォルト | 説明 |
|-----------------|-------------|-------------------------------------------------------------------------------------------------------------|
| `BACKLIGHT_PIN` | `B7` | LED を制御するピン。自身のキーボードを設計している場合を除き、これを変更する必要はないはずです |
| `BACKLIGHT_PINS` | *定義なし* | 実験的: 詳細は以下を見てください |
### 複数のバックライトピン
ほとんどのキーボードは、全てのバックライト LED を制御するたった1つのバックライトピンを持ちます (特にバックライトがハードウェア PWM ピンに接続されている場合)。
ソフトウェア PWM では、複数のバックライトピンを定義することができます。これらすべてのピンは PWM デューティサイクル時に同時にオンおよびオフになります。
この機能により、例えば Caps Lock LED (またはその他の制御可能な LED) の輝度を、バックライトの他の LED と同じレベルに設定することができます。Caps Lock の代わりに LCTRL をマップしていて、Caps Lock がオンの時に Caps Lock LED をアクティブにする代わりにバックライトの一部にする必要がある場合に便利です。
複数のバックライトピンをアクティブにするには、`config.h` に次のようなものを追加する必要があります:
```c
#undef BACKLIGHT_PIN
#define BACKLIGHT_PINS { F5, B2 }
```
## カスタムドライバ
有効にするには、rules.mk に以下を追加します:
```makefile
BACKLIGHT_DRIVER = custom
```
カスタムドライバ API を実装する場合、提供されるキーボードフックは以下の通りです:
```c
void backlight_init_ports(void) {
// オプション - 起動時に実行されます
// - 通常、ここでピンを設定します
}
void backlight_set(uint8_t level) {
// オプション - レベルの変更時に実行されます
// - 通常、ここで新しい値に応答します
}
void backlight_task(void) {
// オプション - 定期的に実行されます
// - ここで長時間実行されるアクションはパフォーマンスの問題を引き起こします
}
```

View File

@ -0,0 +1,52 @@
# Bluetooth
<!---
original document: 5d5ff80:docs/feature_bluetooth.md
git diff 5d5ff80 HEAD -- docs/feature_bluetooth.md | cat
-->
## Bluetooth の既知のサポートハードウェア
現在のところ Bluetooth のサポートは AVR ベースのチップに限られます。Bluetooth 2.1 については、QMK は RN-42 モジュールと、Bluefruit EZ-Key をサポートしますが、後者はもう生産されていません。より最近の BLE プロトコルについては、現在のところ Adafruit Bluefruit SPI Friend のみが直接サポートされています。iOS デバイスに接続するには、BLE が必要です。iOS はマウス入力をサポートしないことに注意してください。
| ボード | Bluetooth プロトコル | 接続タイプ | rules.mk | Bluetooth チップ |
|----------------------------------------------------------------|----------------------------|----------------|---------------------------|--------------|
| [Adafruit EZ-Key HID](https://www.adafruit.com/product/1535) | Bluetooth Classic | UART | `BLUETOOTH = AdafruitEZKey` | |
| Roving Networks RN-42 (Sparkfun Bluesmirf) | Bluetooth Classic | UART | `BLUETOOTH = RN42` | RN-42 |
| [Bluefruit LE SPI Friend](https://www.adafruit.com/product/2633) | Bluetooth Low Energy | SPI | `BLUETOOTH = AdafruitBLE` | nRF51822 |
まだサポートされていませんが、可能性のあるもの:
* [Bluefruit LE UART Friend](https://www.adafruit.com/product/2479)。[tmk 実装がおそらく見つかります](https://github.com/tmk/tmk_keyboard/issues/514)
* RN-42 ファームウェアが書き込まれた HC-05 ボード。どちらも明らかに CSR BC417 チップを使っています。RN-42 ファームウェアを使って書き込むと、HID 機能が提供されます。
* Sparkfun Bluetooth Mate
* HM-13 ベースのボード
### Adafruit BLE SPI Friend
現在のところ QMK によってサポートされている唯一の bluetooth チップセットは、Adafruit Bluefruit SPI Friend です。Adafruit のカスタムファームウェアを実行する Nordic nRF5182 ベースのチップです。データは Hardware SPI を介した Adafruit の SDEP を使って転送されます。[Feather 32u4 Bluefruit LE](https://www.adafruit.com/product/2829) は Adafruit ファームウェアを搭載した Nordic BLE チップに SPI 経由で接続された AVR mcu であるため、サポートされます。SPI friend を使ってカスタムボードを構築する場合、32u4 feather が使用するピン選択を使うのが最も簡単ですが、以下の定義で config.h オプションでピンを変更することができます:
* #define AdafruitBleResetPin D4
* #define AdafruitBleCSPin B4
* #define AdafruitBleIRQPin E6
Bluefruit UART friend は SPI friend に変換することができますが、これにはMDBT40 チップへの直接の再書き込みとはんだ付けが[必要です](https://github.com/qmk/qmk_firmware/issues/2274)。
## Adafruit EZ-Key hid
これには[ハードウェアの変更](https://www.reddit.com/r/MechanicalKeyboards/comments/3psx0q/the_planck_keyboard_with_bluetooth_guide_and/?ref=search_posts)が必要ですが、Makefile を使って有効にすることができます。ファームウェアは引き続き USB 経由で文字を出力するため、コンピュータ経由で充電する場合は注意してください。任意にオフにするために Bluefruit 上にスイッチを持つことは理にかなっています。
<!-- FIXME: Document bluetooth support more completely. -->
## Bluetooth の Rules.mk オプション
これらのうちの1つだけを使ってください
* BLUETOOTH_ENABLE = yes (レガシーオプション)
* BLUETOOTH = RN42
* BLUETOOTH = AdafruitEZKey
* BLUETOOTH = AdafruitBLE
## Bluetooth キーコード
これは複数のキーボードの出力が選択できる場合に使われます。現在のところ、これは USB と Bluetooth の両方をサポートするキーボードで、それらの間の切り替えのみが可能です。
| 名前 | 説明 |
|----------|----------------------------------------------|
| `OUT_AUTO` | USB と Bluetooth を自動的に切り替える |
| `OUT_USB` | USB のみ |
| `OUT_BT` | Bluetooth のみ |

View File

@ -0,0 +1,171 @@
# ブートマジック
<!---
original document: 5d5ff80:docs/feature_bootmagic.md
git diff 5d5ff80 HEAD -- docs/feature_bootmagic.md | cat
-->
再書き込みせずにキーボードの挙動を変更することができる、3つの独立した関連する機能があります。それぞれは似たような機能を持ちますが、キーボードがどのように設定されているかによって異なる方法でアクセスされます。
**ブートマジック**は初期化の間にキーボードを設定するためのシステムです。ブートマジックコマンドを起動するには、ブートマジックキーと1つ以上のコマンドキーを押し続けます。
**ブートマジックキーコード** は前に `MAGIC_` が付いており、キーボードが初期化された*後で*ブートマジックの機能にアクセスすることができます。キーコードを使うには、他のキーコードと同じようにそれらをキーマップに割り当てます。
以前は**マジック**として知られていた**コマンド**は、キーボードの異なる側面を制御することができる別の機能です。ブートマジックと一部の機能を共有しますが、コンソールにバージョン情報を出力するような、ブートマジックにはできないこともできます。詳細は、[コマンド](ja/feature_command.md)を見てください。
一部のキーボードでは、ブートマジックはデフォルトで無効になっています。その場合、`rules.mk` 内で以下のように明示的に有効にする必要があります:
```make
BOOTMAGIC_ENABLE = full
```
?> `full` の代わりに `yes` が使われていることがあるかもしれませんが、これは問題ありません。ただし、`yes` は非推奨で、理想的には `full` (あるいは`lite`) が使われるべきです。
さらに、以下を `rules.mk` ファイルに追加することで、[ブートマジックライト](#bootmagic-lite) (スケールダウンした、とても基本的なバージョンのブートマジック)を使うことができます:
```make
BOOTMAGIC_ENABLE = lite
```
## ホットキー
キーボードを接続しながら、ブートマジックキー(デフォルトはスペース)と目的のホットキーを押します。例えば、スペースと `B` を押したままにすると、ブートローダに入ります。
| ホットキー | 説明 |
|------------------|---------------------------------------------|
| エスケープ | EEPROM のブートマジック設定を無視する |
| `B` | ブートローダに入る |
| `D` | シリアルを介するデバッグ出力の切り替え |
| `X` | キーマトリックスのデバッグ出力の切り替え |
| `K` | キーボードのデバッグの切り替え |
| `M` | マウスのデバッグの切り替え |
| `L` | EE_HANDS 左右設定に、"左手"を設定 |
| `R` | EE_HANDS 左右設定に、"右手"を設定 |
| Backspace | EEPROM をクリア |
| Caps Lock | Caps Lock を左コントロールとして扱うかを切り替え |
| 左 Control | Caps Lock と左コントロールの入れ替えを切り替え |
| 左 Alt | 左 Alt と左 GUI の入れ替えを切り替え |
| 右 Alt | 右 Alt と右 GUI の入れ替えを切り替え |
| 左 GUI | GUI キーの有効・無効を切り替え (ゲームの時に便利です) |
| <code>&#96;</code> | <code>&#96;</code> とエスケープの入れ替えを切り替え |
| `\` | `\` とバックスペースの入れ替えを切り替え |
| `N` | N キーロールオーバー (NKRO) の有効・無効を切り替え |
| `0` | レイヤー 0 をデフォルトレイヤーにする |
| `1` | レイヤー 1 をデフォルトレイヤーにする |
| `2` | レイヤー 2 をデフォルトレイヤーにする |
| `3` | レイヤー 3 をデフォルトレイヤーにする |
| `4` | レイヤー 4 をデフォルトレイヤーにする |
| `5` | レイヤー 5 をデフォルトレイヤーにする |
| `6` | レイヤー 6 をデフォルトレイヤーにする |
| `7` | レイヤー 7 をデフォルトレイヤーにする |
## キーコード :id=keycodes
| キー | エイリアス | 説明 |
|----------------------------------|---------|--------------------------------------------------------------------------|
| `MAGIC_SWAP_CONTROL_CAPSLOCK` | `CL_SWAP` | Caps Lock と左コントロールの入れ替え |
| `MAGIC_UNSWAP_CONTROL_CAPSLOCK` | `CL_NORM` | Caps Lock と左コントロールの入れ替えの解除 |
| `MAGIC_CAPSLOCK_TO_CONTROL` | `CL_CTRL` | Caps Lock をコントロールとして扱う |
| `MAGIC_UNCAPSLOCK_TO_CONTROL` | `CL_CAPS` | Caps Lock をコントロールとして扱うことを止める |
| `MAGIC_SWAP_LCTL_LGUI` | `LCG_SWP` | 左コントロールと GUI の入れ替え |
| `MAGIC_UNSWAP_LCTL_LGUI` | `LCG_NRM` | 左コントロールと GUI の入れ替えを解除 |
| `MAGIC_SWAP_RCTL_RGUI` | `RCG_SWP` | 右コントロールと GUI の入れ替え |
| `MAGIC_UNSWAP_RCTL_RGUI` | `RCG_NRM` | 右コントロールと GUI の入れ替えを解除 |
| `MAGIC_SWAP_CTL_GUI` | `CG_SWAP` | 両側のコントロールと GUI の入れ替え |
| `MAGIC_UNSWAP_CTL_GUI` | `CG_NORM` | 両側のコントロールと GUI の入れ替えを解除 |
| `MAGIC_TOGGLE_CTL_GUI` | `CG_TOGG` | 両側のコントロールと GUI の入れ替えの切り替え |
| `MAGIC_SWAP_LALT_LGUI` | `LAG_SWP` | 左 Alt と GUI の入れ替え |
| `MAGIC_UNSWAP_LALT_LGUI` | `LAG_NRM` | 左 Alt と GUI の入れ替えを解除 |
| `MAGIC_SWAP_RALT_RGUI` | `RAG_SWP` | 右 Alt と GUI の入れ替え |
| `MAGIC_UNSWAP_RALT_RGUI` | `RAG_NRM` | 右 Alt と GUI の入れ替えを解除 |
| `MAGIC_SWAP_ALT_GUI` | `AG_SWAP` | 両側の Alt と GUI の入れ替え |
| `MAGIC_UNSWAP_ALT_GUI` | `AG_NORM` | 両側の Alt と GUI の入れ替えを解除 |
| `MAGIC_TOGGLE_ALT_GUI` | `AG_TOGG` | 両側の Alt と GUI の入れ替えの切り替え |
| `MAGIC_NO_GUI` | `GUI_OFF` | GUI キーを無効にする |
| `MAGIC_UNNO_GUI` | `GUI_ON` | GUI キーを有効にする |
| `MAGIC_SWAP_GRAVE_ESC` | `GE_SWAP` | <code>&#96;</code> とエスケープの入れ替え |
| `MAGIC_UNSWAP_GRAVE_ESC` | `GE_NORM` | <code>&#96;</code> とエスケープの入れ替えを解除 |
| `MAGIC_SWAP_BACKSLASH_BACKSPACE` | `BS_SWAP` | `\` とバックスペースを入れ替え |
| `MAGIC_UNSWAP_BACKSLASH_BACKSPACE` | `BS_NORM` | `\` とバックスペースの入れ替えを解除する |
| `MAGIC_HOST_NKRO` | `NK_ON` | N キーロールオーバーを有効にする |
| `MAGIC_UNHOST_NKRO` | `NK_OFF` | N キーロールオーバーを無効にする |
| `MAGIC_TOGGLE_NKRO` | `NK_TOGG` | N キーロールオーバーの有効・無効を切り替え |
| `MAGIC_EE_HANDS_LEFT` | `EH_LEFT` | 分割キーボードのマスター側を左手に設定(`EE_HANDS` 用) |
| `MAGIC_EE_HANDS_RIGHT` | `EH_RGHT` | 分割キーボードのマスター側を右手に設定(`EE_HANDS` 用) |
## 設定
ブートマジックのためのホットキーの割り当てを変更したい場合は、キーボードあるいはキーマップレベルのどちらかで、`config.h` にこれらを `#define` します。
| 定義 | デフォルト | 説明 |
|----------------------------------------|-------------|---------------------------------------------------|
| `BOOTMAGIC_KEY_SALT` | `KC_SPACE` | ブートマジックキー |
| `BOOTMAGIC_KEY_SKIP` | `KC_ESC` | EEPROM のブートマジック設定を無視する |
| `BOOTMAGIC_KEY_EEPROM_CLEAR` | `KC_BSPACE` | EEPROM 設定をクリアする |
| `BOOTMAGIC_KEY_BOOTLOADER` | `KC_B` | ブートローダに入る |
| `BOOTMAGIC_KEY_DEBUG_ENABLE` | `KC_D` | シリアルを介するデバッグ出力の切り替え |
| `BOOTMAGIC_KEY_DEBUG_MATRIX` | `KC_X` | マトリックスのデバッグを切り替え |
| `BOOTMAGIC_KEY_DEBUG_KEYBOARD` | `KC_K` | キーボードのデバッグの切り替え |
| `BOOTMAGIC_KEY_DEBUG_MOUSE` | `KC_M` | マウスのデバッグの切り替え |
| `BOOTMAGIC_KEY_EE_HANDS_LEFT` | `KC_L` | EE_HANDS 左右設定に、"左手"を設定 |
| `BOOTMAGIC_KEY_EE_HANDS_RIGHT` | `KC_R` | EE_HANDS 左右設定に、"右手"を設定 |
| `BOOTMAGIC_KEY_SWAP_CONTROL_CAPSLOCK` | `KC_LCTRL` | 左コントロールと Caps Lock の入れ替え |
| `BOOTMAGIC_KEY_CAPSLOCK_TO_CONTROL` | `KC_CAPSLOCK` | Caps Lock を左コントロールとして扱うかを切り替え |
| `BOOTMAGIC_KEY_SWAP_LALT_LGUI` | `KC_LALT` | 左 Alt と左 GUI の入れ替えを切り替え (macOS 用) |
| `BOOTMAGIC_KEY_SWAP_RALT_RGUI` | `KC_RALT` | 右 Alt と右 GUI の入れ替えを切り替え (macOS 用) |
| `BOOTMAGIC_KEY_NO_GUI` | `KC_LGUI` | GUI キーの有効・無効を切り替え (ゲームの時に便利です) |
| `BOOTMAGIC_KEY_SWAP_GRAVE_ESC` | `KC_GRAVE` | <code>&#96;</code> とエスケープの入れ替えを切り替え |
| `BOOTMAGIC_KEY_SWAP_BACKSLASH_BACKSPACE` | `KC_BSLASH` | `\` とバックスペースの入れ替えを切り替え |
| `BOOTMAGIC_HOST_NKRO` | `KC_N` | N キーロールオーバー (NKRO) の有効・無効を切り替え |
| `BOOTMAGIC_KEY_DEFAULT_LAYER_0` | `KC_0` | レイヤー 0 をデフォルトレイヤーにする |
| `BOOTMAGIC_KEY_DEFAULT_LAYER_1` | `KC_1` | レイヤー 1 をデフォルトレイヤーにする |
| `BOOTMAGIC_KEY_DEFAULT_LAYER_2` | `KC_2` | レイヤー 2 をデフォルトレイヤーにする |
| `BOOTMAGIC_KEY_DEFAULT_LAYER_3` | `KC_3` | レイヤー 3 をデフォルトレイヤーにする |
| `BOOTMAGIC_KEY_DEFAULT_LAYER_4` | `KC_4` | レイヤー 4 をデフォルトレイヤーにする |
| `BOOTMAGIC_KEY_DEFAULT_LAYER_5` | `KC_5` | レイヤー 5 をデフォルトレイヤーにする |
| `BOOTMAGIC_KEY_DEFAULT_LAYER_6` | `KC_6` | レイヤー 6 をデフォルトレイヤーにする |
| `BOOTMAGIC_KEY_DEFAULT_LAYER_7` | `KC_7` | レイヤー 7 をデフォルトレイヤーにする |
# ブートマジックライト :id=bootmagic-lite
本格的なブートマジック機能の他に、ブートローダへのジャンプのみを処理するブートマジックライトがあります。これは、物理的なリセットボタンが無くブートローダにジャンプする方法が必要だが、ブートマジックが引き起こす問題を扱いたくないキーボードに適しています。
ブートマジックのこのバージョンを有効にするには、以下を使って `rules.mk` で有効にする必要があります:
```make
BOOTMAGIC_ENABLE = lite
```
さらに、どのキーを使うかを指定したほうが良いかもしれません。これは普通ではないマトリックスを持つキーボードで特に便利です。そのためには、使いたいキーの行と列を指定する必要があります。`config.h` ファイルにこれらのエントリを追加します:
```c
#define BOOTMAGIC_LITE_ROW 0
#define BOOTMAGIC_LITE_COLUMN 1
```
デフォルトでは、これらは 0 と 0 に設定されます。これは通常はほとんどのキーボードで "ESC" キーです。
ブートローダを起動するには、キーボードを接続する時にこのキーを押し続けます。たった1つのキーです。
!> ブートマジックライトを使用すると、EEPROM を**常にリセットします**。つまり保存された全ての設定は失われます。
## 高度なブートマジックライト
`bootmagic_lite` 関数は必要に応じてコード内で置き換えることができるように、弱く定義されています。これの良い例は Zeal60 キーボードで、追加の処理が必要です。
関数を置き換えるには、以下のようなものをコードに追加するだけです:
```c
void bootmagic_lite(void) {
matrix_scan();
wait_ms(DEBOUNCE * 2);
matrix_scan();
if (matrix_get_row(BOOTMAGIC_LITE_ROW) & (1 << BOOTMAGIC_LITE_COLUMN)) {
// ブートローダにジャンプする。
bootloader_jump();
}
}
```
追加の機能をここに追加することができます。例えば、eeprom のリセットやブートマジックを起動するために押す必要がある追加のキーです。`bootmagic_lite` はファームウェア内で大部分の機能が初期化される前に呼ばれることに注意してください。

108
docs/ja/feature_combo.md Normal file
View File

@ -0,0 +1,108 @@
# コンボ
<!---
original document: 0.8.94:docs/feature_combo.md
git diff 0.8.94 HEAD -- docs/feature_combo.md | cat
-->
コンボ機能は、同時押し方式でのカスタムアクション追加機能です。同時に複数のキーを押して、異なる効果を生み出すことができます。例えば、タッピング時間内で `A``S` を押すと、代わりに `ESC` が押されます。もっと複雑なタスクを実行させることもできます。
この機能を有効にするには、`rules.mk` に `COMBO_ENABLE = yes` を追加する必要があります。
さらに、使用するコンボの数を `config.h` の中で、`#define COMBO_COUNT 1` (1を使用するコンボの数で置き換えます)と書いて、指定する必要があります。
<!-- At this time, this is necessary -->
また、デフォルトでは、コンボのタッピング時間は `TAPPING_TERM` と同じ値に設定されます (ほとんどのキーボードではデフォルトで 200)。ただし、`config.h` で定義することにより異なる値を指定することができます。例えば: `#define COMBO_TERM 300` はコンボのためのタイムアウト時間を 300ms に設定します。
次に、`keymap.c` ファイルに、`COMBO_END` で終了するキーのシーケンス、およびキーの組み合わせを列挙する構造体、その結果のアクションを定義する必要があります。
```c
const uint16_t PROGMEM test_combo[] = {KC_A, KC_B, COMBO_END};
combo_t key_combos[COMBO_COUNT] = {COMBO(test_combo, KC_ESC)};
```
これは、A と B のキーを押した場合に、"Escape" を送信します。
!> このメソッドは[基本的なキーコード](ja/keycodes_basic.md)のみをサポートします。詳細な制御については例を見てください。
## 例
リストを追加したい場合は、以下のようなものを使います:
```c
enum combos {
AB_ESC,
JK_TAB
};
const uint16_t PROGMEM ab_combo[] = {KC_A, KC_B, COMBO_END};
const uint16_t PROGMEM jk_combo[] = {KC_J, KC_K, COMBO_END};
combo_t key_combos[COMBO_COUNT] = {
[AB_ESC] = COMBO(ab_combo, KC_ESC),
[JK_TAB] = COMBO(jk_combo, KC_TAB)
};
```
より複雑な実装として、カスタム処理を追加するために `process_combo_event` 関数を使うことができます。
```c
enum combo_events {
ZC_COPY,
XV_PASTE
};
const uint16_t PROGMEM copy_combo[] = {KC_Z, KC_C, COMBO_END};
const uint16_t PROGMEM paste_combo[] = {KC_X, KC_V, COMBO_END};
combo_t key_combos[COMBO_COUNT] = {
[ZC_COPY] = COMBO_ACTION(copy_combo),
[XV_PASTE] = COMBO_ACTION(paste_combo),
};
void process_combo_event(uint8_t combo_index, bool pressed) {
switch(combo_index) {
case ZC_COPY:
if (pressed) {
tap_code16(LCTL(KC_C));
}
break;
case XV_PASTE:
if (pressed) {
tap_code16(LCTL(KC_V));
}
break;
}
}
```
これは、Z と C を押すと Ctrl+C を送信し、X と V を押すと Ctrl+V を送信します。これを変更して、レイヤーの変更、サウンドの再生、設定の変更などを行うこともできます。
## 追加の設定
長いコンボあるいはさらに長いコンボを使っている場合、構造体があなたのしていることに対応するのに十分な大きさで無いかもしれないため、問題が発生するかもしれません。
この場合、`config.h` ファイルに `#define EXTRA_LONG_COMBOS` または `#define EXTRA_EXTRA_LONG_COMBOS` のどちらかを追加することができます。
`COMBO_ALLOW_ACTION_KEYS` を定義することでアクションキーを有効にすることもできます。
## キーコード
その場でコンボ機能を有効、無効および切り替えすることができます。ゲームなどで、一時的にそれらを無効にする必要がある場合に便利です。
| キーコード | 説明 |
|----------|---------------------------------|
| `CMB_ON` | コンボ機能をオンにします |
| `CMB_OFF` | コンボ機能をオフにします |
| `CMB_TOG` | コンボ機能のオンとオフを切り替えます |
## ユーザコールバック
キーコードに加えて、状態を設定または状態をチェックするために使うことができる幾つかの関数があります:
| 関数 | 説明 |
|-----------|--------------------------------------------------------------------|
| `combo_enable()` | コンボ機能を有効にします |
| `combo_disable()` | コンボ機能を無効にし、コンボバッファをクリアします |
| `combo_toggle()` | コンボ機能の状態を切り替えます |
| `is_combo_enabled()` | コンボ機能の状態(true か false)を返します |

View File

@ -0,0 +1,56 @@
# コマンド
<!---
original document: 0.8.94:docs/feature_command.md
git diff 0.8.94 HEAD -- docs/feature_command.md | cat
-->
コマンド(旧称:マジック)は、ファームウェアを書き込んだり、[ブートマジック](ja/feature_bootmagic.md)を使うためにプラグを抜いたりすることなくキーボードの挙動を変更する方法です。この機能と[ブートマジックキーコード](feature_bootmagic.md#keycodes)には多くの重複があります。可能な限り、コマンドでは無くブートマジックキーコードの機能を使うことをお勧めします。
一部のキーボードではコマンドがデフォルトで無効になっています。その場合、`rules.mk` 内で明示的に有効にする必要があります:
```make
COMMAND_ENABLE = yes
```
## 使用法
コマンドを使うには、`IS_COMMAND()` マクロで定義されたキーの組み合わせを押し続けます。デフォルトでは、これは「左Shift + 右Shift」です。次に、目的のコマンドに対応するキーを押します。例えば、現在の QMK バージョンを QMK Toolbox コンソールに出力するには、「左Shift + 右Shift + `V`」を押します。
## 設定
コマンドのためのキーの割り当てを変更したい場合は、キーボードあるいはキーマップレベルのどちらかで、`config.h` にこれらを `#define` します。ここで割り当てる全てのキーコードは `KC_` 接頭辞を省略する必要があります。
| 定義 | デフォルト | 説明 |
|------------------------------------|--------------------------------|------------------------------------------------|
| `IS_COMMAND()` | `(get_mods() == MOD_MASK_SHIFT)` | コマンドをアクティブにするキーの組み合わせ |
| `MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS` | `true` | ファンクション行を使ってデフォルトレイヤーを設定 |
| `MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS` | `true` | 数字キーでデフォルトレイヤーを設定 |
| `MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM` | `false` | `MAGIC_KEY_LAYER0..9` を使ってデフォルトレイヤーを設定 |
| `MAGIC_KEY_DEBUG` | `D` | シリアルを介するデバッグの切り替え |
| `MAGIC_KEY_DEBUG_MATRIX` | `X` | キーマトリックスのデバッグの切り替え |
| `MAGIC_KEY_DEBUG_KBD` | `K` | キーボードのデバッグの切り替え |
| `MAGIC_KEY_DEBUG_MOUSE` | `M` | マウスのデバッグの切り替え |
| `MAGIC_KEY_CONSOLE` | `C` | コマンドコンソールを有効にする |
| `MAGIC_KEY_VERSION` | `V` | コンソールに実行中の QMK バージョンを出力 |
| `MAGIC_KEY_STATUS` | `S` | コンソールに現在のキーボードの状態を出力 |
| `MAGIC_KEY_HELP` | `H` | コンソールにコマンドのヘルプを出力 |
| `MAGIC_KEY_HELP_ALT` | `SLASH` | コンソールにコマンドのヘルプを出力 (代替) |
| `MAGIC_KEY_LAYER0` | `0` | レイヤー 0 をデフォルトレイヤーにする |
| `MAGIC_KEY_LAYER0_ALT` | `GRAVE` | レイヤー 0 をデフォルトレイヤーにする (代替) |
| `MAGIC_KEY_LAYER1` | `1` | レイヤー 1 をデフォルトレイヤーにする |
| `MAGIC_KEY_LAYER2` | `2` | レイヤー 2 をデフォルトレイヤーにする |
| `MAGIC_KEY_LAYER3` | `3` | レイヤー 3 をデフォルトレイヤーにする |
| `MAGIC_KEY_LAYER4` | `4` | レイヤー 4 をデフォルトレイヤーにする |
| `MAGIC_KEY_LAYER5` | `5` | レイヤー 5 をデフォルトレイヤーにする |
| `MAGIC_KEY_LAYER6` | `6` | レイヤー 6 をデフォルトレイヤーにする |
| `MAGIC_KEY_LAYER7` | `7` | レイヤー 7 をデフォルトレイヤーにする |
| `MAGIC_KEY_LAYER8` | `8` | レイヤー 8 をデフォルトレイヤーにする |
| `MAGIC_KEY_LAYER9` | `9` | レイヤー 9 をデフォルトレイヤーにする |
| `MAGIC_KEY_BOOTLOADER` | `B` | ブートローダにジャンプする |
| `MAGIC_KEY_BOOTLOADER_ALT` | `ESC` | ブートローダにジャンプする (代替) |
| `MAGIC_KEY_LOCK` | `CAPS` | 何も入力できないようにキーボードをロック |
| `MAGIC_KEY_EEPROM` | `E` | 保存された EEPROM 設定をコンソールに出力 |
| `MAGIC_KEY_EEPROM_CLEAR` | `BSPACE` | EEPROM をクリア |
| `MAGIC_KEY_NKRO` | `N` | N キーロールオーバー (NKRO) の有効・無効を切り替え |
| `MAGIC_KEY_SLEEP_LED` | `Z` | コンピュータがスリープの時に LED を切り替え |

View File

@ -0,0 +1,95 @@
# DIP スイッチ
<!---
original document: 0.8.94:docs/feature_dip_switch.md
git diff 0.8.94 HEAD -- docs/feature_dip_switch.md | cat
-->
DIP スイッチは、以下を `rules.mk` に追加することでサポートされます:
DIP_SWITCH_ENABLE = yes
さらに、以下を `config.h` に追加します:
```c
#define DIP_SWITCH_PINS { B14, A15, A10, B9 }
```
## コールバック
コールバック関数を `<keyboard>.c` に記述することができます:
```c
void dip_switch_update_kb(uint8_t index, bool active) {
dip_switch_update_user(index, active);
}
```
あるいは `keymap.c` に記述することもできます:
```c
void dip_switch_update_user(uint8_t index, bool active) {
switch (index) {
case 0:
if(active) { audio_on(); } else { audio_off(); }
break;
case 1:
if(active) { clicky_on(); } else { clicky_off(); }
break;
case 2:
if(active) { music_on(); } else { music_off(); }
break;
case 3:
if (active) {
#ifdef AUDIO_ENABLE
PLAY_SONG(plover_song);
#endif
layer_on(_PLOVER);
} else {
#ifdef AUDIO_ENABLE
PLAY_SONG(plover_gb_song);
#endif
layer_off(_PLOVER);
}
break;
}
}
```
更に、より複雑な処理ができるビットマスク関数をサポートします。
```c
void dip_switch_update_mask_kb(uint32_t state) {
dip_switch_update_mask_user(state);
}
```
あるいは `keymap.c` に記述することもできます:
```c
void dip_switch_update_mask_user(uint32_t state) {
if (state & (1UL<<0) && state & (1UL<<1)) {
layer_on(_ADJUST); // C on esc
} else {
layer_off(_ADJUST);
}
if (state & (1UL<<0)) {
layer_on(_TEST_A); // A on ESC
} else {
layer_off(_TEST_A);
}
if (state & (1UL<<1)) {
layer_on(_TEST_B); // B on esc
} else {
layer_off(_TEST_B);
}
}
```
## ハードウェア
DIP スイッチの片側は MCU のピンへ直接配線し、もう一方の側はグラウンドに配線する必要があります。機能的に同じであるため、どちら側がどちらに接続されているかは問題にはならないはずです。

View File

@ -0,0 +1,71 @@
# 動的マクロ: ランタイムでのマクロの記録および再生
<!---
original document: 0.8.123:docs/feature_dynamic_macros.md
git diff 0.8.123 HEAD -- docs/feature_dynamic_macros.md | cat
-->
QMK はその場で作られた一時的なマクロをサポートします。これらを動的マクロと呼びます。それらはユーザがキーボードから定義し、キーボードのプラグを抜くか再起動すると失われます。
1つまたは2つのマクロに合計128のキー押下を保存できます。RAM をより多く使用してサイズを増やすことができます。
有効にするには、最初に `rules.mk``DYNAMIC_MACRO_ENABLE = yes` を記述します。そして、以下のキーをキーマップに追加します:
| キー | Alias | 説明 |
|------------------|----------|---------------------------------------------------|
| `DYN_REC_START1` | `DM_REC1` | マクロ 1 の記録を開始します |
| `DYN_REC_START2` | `DM_REC2` | マクロ 2 の記録を開始します |
| `DYN_MACRO_PLAY1` | `DM_PLY1` | マクロ 1 を再生します |
| `DYN_MACRO_PLAY2` | `DM_PLY2` | マクロ 2 を再生します |
| `DYN_REC_STOP` | `DM_RSTP` | 現在記録中のマクロの記録を終了します。 |
これが必要な全てです。
マクロの記録を開始するには、`DYN_REC_START1` または `DYN_REC_START2` のどちらかを押します。
記録を終了するには、`DYN_REC_STOP` レイヤーボタンを押します。
マクロを再生するには、`DYN_MACRO_PLAY1` あるいは `DYN_MACRO_PLAY2` のどちらかを押します。
マクロの一部としてマクロを再生することができます。マクロ 1 を記録中にマクロ 2 を再生、またはその逆も問題ありません。ただし、再帰的なマクロ、つまりマクロ 1 を再生するマクロ 1 は作成しないでください。もしそうしてキーボードが反応しなくなった場合は、キーボードを取り外し再び接続します。これを完全に無効にするには、`config.h` ファイルで `DYNAMIC_MACRO_NO_NESTING` を定義します。
?> 動的マクロの内部の詳細については、`process_dynamic_macro.h` および `process_dynamic_macro.c` ファイルのコメントを読んでください。
## カスタマイズ
ある程度のカスタマイズを可能にするオプションがいくつか追加されています。
| 定義 | デフォルト | 説明 |
|----------------------------|----------------|-----------------------------------------------------------------------------------------------------------------|
| `DYNAMIC_MACRO_SIZE` | 128 | 動的マクロが使用できるメモリ量を設定します。これは限られたリソースであり、コントローラに依存します。 |
| `DYNAMIC_MACRO_USER_CALL` | *定義なし* | これを定義すると、ユーザの `keymap.c` ファイルを使ってマクロが起動されます。 |
| `DYNAMIC_MACRO_NO_NESTING` | *定義なし* | これを定義すると、別のマクロからマクロを呼び出す(入れ子になったマクロ)機能を無効にします。 |
記録中にキーを押すたびに LED が点滅し始めた場合は、マクロバッファにマクロを入れるスペースがもう無いことを意味します。マクロを入れるには、他のマクロ(それらは同じバッファを共有します)を短くするか、`config.h` に `DYNAMIC_MACRO_SIZE` 定義を追加することでバッファを増やします(デフォルト値: 128; ヘッダ内のコメントを読んでください)。
### DYNAMIC_MACRO_USER_CALL
以前のバージョンの動的マクロをお使いの方へ: 専用の `DYN_REC_STOP` キーを使わずに動的マクロキーへのアクセスに使われるレイヤーモディファイアのみを使って、マクロの記録を終了することもまだ可能です。この動作に戻したい場合は、`#define DYNAMIC_MACRO_USER_CALL` を `config.h` に追加し、以下のスニペットを `process_record_user()` 関数の先頭に記述します:
```c
uint16_t macro_kc = (keycode == MO(_DYN) ? DYN_REC_STOP : keycode);
if (!process_record_dynamic_macro(macro_kc, record)) {
return false;
}
```
### ユーザフック
カスタム機能とフィードバックオプションを動的マクロ機能に追加するために使うことができるフックが幾つかあります。これによりある程度のカスタマイズが可能になります。
direction がどのマクロであるかを示すことに注意してください。`1` がマクロ 1、`-1` がマクロ 2、0 がマクロ無しです。
* `dynamic_macro_record_start_user(void)` - マクロの記録を開始する時に起動されます。
* `dynamic_macro_play_user(int8_t direction)` - マクロを再生する時に起動されます。
* `dynamic_macro_record_key_user(int8_t direction, keyrecord_t *record)` - マクロの記録中に各キー押下で起動されます。
* `dynamic_macro_record_end_user(int8_t direction)` - マクロの記録を停止した時に起動されます。
さらに、動的マクロ機能が有効な場合にバックライトを点滅させるために `dynamic_macro_led_blink()` を呼び出すことができます。

View File

@ -0,0 +1,81 @@
# エンコーダ
<!---
original document: 0.8.123:docs/feature_encoders.md
git diff 0.8.123 HEAD -- docs/feature_encoders.md | cat
-->
以下を `rules.mk` に追加することで基本的なエンコーダがサポートされます:
```make
ENCODER_ENABLE = yes
```
さらに、以下を `config.h` に追加します:
```c
#define ENCODERS_PAD_A { B12 }
#define ENCODERS_PAD_B { B13 }
```
各 PAD_A/B 変数は配列を定義するため、複数のエンコーダを定義することができます。例えば:
```c
#define ENCODERS_PAD_A { encoder1a, encoder2a }
#define ENCODERS_PAD_B { encoder1b, encoder2b }
```
エンコーダの時計回りの方向が間違っている場合は、A と B のパッド定義を交換することができます。define を使って逆にすることもできます:
```c
#define ENCODER_DIRECTION_FLIP
```
さらに、解像度を同じファイルで指定することができます (デフォルトかつお勧めは4):
```c
#define ENCODER_RESOLUTION 4
```
## 分割キーボード
分割キーボードのそれぞれの側のエンコーダに異なるピン配列を使っている場合、右側のピン配列を以下のように定義することができます:
```c
#define ENCODERS_PAD_A_RIGHT { encoder1a, encoder2a }
#define ENCODERS_PAD_B_RIGHT { encoder1b, encoder2b }
```
## コールバック
コールバック関数を `<keyboard>.c` に記述することができます:
```c
void encoder_update_kb(uint8_t index, bool clockwise) {
encoder_update_user(index, clockwise);
}
```
あるいは `keymap.c` に記述することもできます:
```c
void encoder_update_user(uint8_t index, bool clockwise) {
if (index == 0) { /* First encoder */
if (clockwise) {
tap_code(KC_PGDN);
} else {
tap_code(KC_PGUP);
}
} else if (index == 1) { /* Second encoder */
if (clockwise) {
tap_code(KC_DOWN);
} else {
tap_code(KC_UP);
}
}
}
```
## ハードウェア
エンコーダの A と B の線は MCU に直接配線し、C/common 線はグランドに配線する必要があります。

View File

@ -0,0 +1,37 @@
# グレイブエスケープ
<!---
original document: 0.8.123:docs/feature_grave_esc.md
git diff 0.8.123 HEAD -- docs/feature_grave_esc.md | cat
-->
60% キーボード、またはファンクションキー行の無い他のレイアウトを使っている場合、専用の Escape キーが無いことに気付くでしょう。グレイブエスケープは grave キー (<code>&#96;</code> および `~`) を Escape と共有することができる機能です。
## 使用法
キーマップ内の `KC_GRAVE` キー (通常は`1` キーの左)を `KC_GESC` に置き換えます。ほとんどの場合、このキーは押された時に `KC_ESC` を出力します。ただし、Shift あるいは GUI を押したままにすると、代わりに `KC_GRV` を出力します。
## OS に見えるもの
メアリーがキーボードで GESC を押すと、OS には KC_ESC 文字が見えます。メアリーが Shift を押しながら GESC を押すと、`~` または Shift された時はバッククォートを出力します。彼女が GUI/CMD/WIN を押したままにすると、1つの <code>&#96;</code> 文字を出力します。
## キーコード
| キー | エイリアス | 説明 |
|---------|-----------|------------------------------------------------------------------|
| `KC_GESC` | `GRAVE_ESC` | 押された場合に Escape。Shift あるいは GUI が押されたままの場合は <code>&#96;</code> |
### 注意事項
macOS では、Command+<code>&#96;</code> はデフォルトで "次のウィンドウを操作対象にする" にマップされます。つまりバッククォートを出力しません。さらに、ショートカットがキーボード環境設定で変更された場合でも、ターミナルは常にこのショートカットを認識してウィンドウを切り替えます。
## 設定
グレイブエスケープが壊す可能性のあるキーの組み合わせが幾つかあります。その中には、Windows では Control+Shift+Escape、macOSでは Command+Option+Escape があります。これを回避するには、`config.h` で以下のオプションを `#define` することができます:
| 定義 | 説明 |
|--------------------------|-----------------------------------------|
| `GRAVE_ESC_ALT_OVERRIDE` | Alt が押された場合、常に Escape を送信する |
| `GRAVE_ESC_CTRL_OVERRIDE` | Control が押された場合、常に Escape を送信する |
| `GRAVE_ESC_GUI_OVERRIDE` | GUI が押された場合、常に Escape を送信する |
| `GRAVE_ESC_SHIFT_OVERRIDE` | Shift が押された場合、常に Escape を送信する |

View File

@ -0,0 +1,163 @@
# 触覚フィードバック
<!---
original document: 0.8.123:docs/feature_haptic_feedback.md
git diff 0.8.123 HEAD -- docs/feature_haptic_feedback.md | cat
-->
## 触覚フィードバック の rules.mk オプション
現在のところ、`rules.mk` で触覚フィードバック用に以下のオプションを利用可能です:
`HAPTIC_ENABLE += DRV2605L`
`HAPTIC_ENABLE += SOLENOID`
## サポートされる既知のハードウェア
| 名前 | 説明 |
|--------------------|-------------------------------------------------|
| [LV061228B-L65-A](https://www.digikey.com/product-detail/en/jinlong-machinery-electronics-inc/LV061228B-L65-A/1670-1050-ND/7732325) | z-axis 2v LRA |
| [Mini Motor Disc](https://www.adafruit.com/product/1201) | small 2-5v ERM |
## 触覚キーコード
以下のキーコードは、選択した触覚メカニズムに依存して動作するかどうか決まります。
| 名前 | 説明 |
|-----------|-------------------------------------------------------|
| `HPT_ON` | 触覚フィードバックをオン |
| `HPT_OFF` | 触覚フィードバックをオフ |
| `HPT_TOG` | 触覚フィードバックのオン/オフを切り替え |
| `HPT_RST` | 触覚フィードバック設定をデフォルトに戻す |
| `HPT_FBK` | キー押下またはリリースまたはその両方でフィードバックを切り替え |
| `HPT_BUZ` | ソレノイドの振動のオン/オフを切り替え |
| `HPT_MODI` | 次の DRV2605L 波形に移動 |
| `HPT_MODD` | 前の DRV2605L 波形に移動 |
| `HPT_CONT` | 連続触覚モードのオン/オフを切り替え |
| `HPT_CONI` | DRV2605L の連続触覚強度を増加 |
| `HPT_COND` | DRV2605L の連続触覚強度を減少 |
| `HPT_DWLI` | ソレノイドの滞留時間を増加 |
| `HPT_DWLD` | ソレノイドの滞留時間を減少 |
### ソレノイド
ほとんどの MCU はソレノイドのコイルを駆動するために必要な電流を供給できないため、最初に MOSFET を介してソレノイドを駆動する回路を構築する必要があります。
[Adafruit が提供する配線図](https://playground.arduino.cc/uploads/Learning/solenoid_driver.pdf)
| 設定 | デフォルト | 説明 |
|--------------------------|---------------|-------------------------------------------------------|
| `SOLENOID_PIN` | *定義なし* | ソレノイドが接続されているピンを設定する。 |
| `SOLENOID_DEFAULT_DWELL` | `12` ms | ソレノイドのデフォルトの滞留時間を設定する。 |
| `SOLENOID_MIN_DWELL` | `4` ms | 滞留時間の下限を設定する。 |
| `SOLENOID_MAX_DWELL` | `100` ms | 滞留時間の上限を設定する。 |
?> 滞留時間とは、「プランジャー」が作動したままになる時間です。滞留時間により、ソレノイドの音が変わります。
ブートローダ実行中に一部のピンが給電されているかもしれず (例えば、STM32F303 チップ上の A13)、そうすると書き込みプロセスの間ずっとソレノイドがオン状態になることに注意してください。これはソレノイドを加熱し損傷を与えるかもしれません。ソレノイドが接続されているピンがブートローダ/DFU 実行中にソレノイドをオンにしていることが分かった場合は、他のピンを選択してください。
### DRV2605L
DRV2605Lは i2c プロトコルで制御され、SDA および SCL ピンに接続する必要があります。これらは使用する MCU によって異なります。
#### フィードバックモータのセットアップ
このドライバは2つの異なるフィードバックモータをサポートします。選択したモータに基づいて、`config.h` で以下を設定します。
##### ERM
偏心回転質量振動モータ (ERM) は偏りのある重りが取り付けられたモータで、駆動信号が取り付けられると偏りのある重りが回転し、正弦波が振動に変換されます。
```
#define FB_ERM_LRA 0
#define FB_BRAKEFACTOR 3 /* For 1x:0, 2x:1, 3x:2, 4x:3, 6x:4, 8x:5, 16x:6, Disable Braking:7 */
#define FB_LOOPGAIN 1 /* For Low:0, Medium:1, High:2, Very High:3 */
/* 特定のモータに最適な設定については、データシートを参照してください。*/
#define RATED_VOLTAGE 3
#define V_PEAK 5
```
##### LRA
線形共振アクチュエータ (LRA、線形バイブレータとしても知られています)は、ERM と異なります。LRA は重りと磁石をバネで吊るしたものとボイスコイルで構成されています。駆動信号が印加されるとされると、重りは単一の軸で振動します (左右または上下)。重りはバネに取り付けられているため、特定の周波数で共振効果があります。この周波数は LRA が最も効率的に動作する箇所です。この周波数の推奨範囲については、モータのデータシートを参照してください。
```
#define FB_ERM_LRA 1
#define FB_BRAKEFACTOR 3 /* For 1x:0, 2x:1, 3x:2, 4x:3, 6x:4, 8x:5, 16x:6, Disable Braking:7 */
#define FB_LOOPGAIN 1 /* For Low:0, Medium:1, High:2, Very High:3 */
/* 特定のモータに最適な設定については、データシートを参照してください。*/
#define RATED_VOLTAGE 2
#define V_PEAK 2.8
#define V_RMS 2.0
#define V_PEAK 2.1
#define F_LRA 205 /* 共振周波数 */
```
#### DRV2605L 波形ライブラリ
DRV2605L には呼び出して再生できる様々な波形シーケンスのプリロードライブラリが同梱されています。マクロを書く場合、これらの波形は `DRV_pulse(*sequence name or number*)` を使って再生することができます
データシートの波形シーケンスのリスト
| seq# | シーケンス名 | seq# | シーケンス名 | seq# | シーケンス名 |
|-----|---------------------|-----|-----------------------------------|-----|--------------------------------------|
| 1 | strong_click | 43 | lg_dblclick_med_60 | 85 | transition_rampup_med_smooth2 |
| 2 | strong_click_60 | 44 | lg_dblsharp_tick | 86 | transition_rampup_short_smooth1 |
| 3 | strong_click_30 | 45 | lg_dblsharp_tick_80 | 87 | transition_rampup_short_smooth2 |
| 4 | sharp_click | 46 | lg_dblsharp_tick_60 | 88 | transition_rampup_long_sharp1 |
| 5 | sharp_click_60 | 47 | buzz | 89 | transition_rampup_long_sharp2 |
| 6 | sharp_click_30 | 48 | buzz_80 | 90 | transition_rampup_med_sharp1 |
| 7 | soft_bump | 49 | buzz_60 | 91 | transition_rampup_med_sharp2 |
| 8 | soft_bump_60 | 50 | buzz_40 | 92 | transition_rampup_short_sharp1 |
| 9 | soft_bump_30 | 51 | buzz_20 | 93 | transition_rampup_short_sharp2 |
| 10 | dbl_click | 52 | pulsing_strong | 94 | transition_rampdown_long_smooth1_50 |
| 11 | dbl_click_60 | 53 | pulsing_strong_80 | 95 | transition_rampdown_long_smooth2_50 |
| 12 | trp_click | 54 | pulsing_medium | 96 | transition_rampdown_med_smooth1_50 |
| 13 | soft_fuzz | 55 | pulsing_medium_80 | 97 | transition_rampdown_med_smooth2_50 |
| 14 | strong_buzz | 56 | pulsing_sharp | 98 | transition_rampdown_short_smooth1_50 |
| 15 | alert_750ms | 57 | pulsing_sharp_80 | 99 | transition_rampdown_short_smooth2_50 |
| 16 | alert_1000ms | 58 | transition_click | 100 | transition_rampdown_long_sharp1_50 |
| 17 | strong_click1 | 59 | transition_click_80 | 101 | transition_rampdown_long_sharp2_50 |
| 18 | strong_click2_80 | 60 | transition_click_60 | 102 | transition_rampdown_med_sharp1_50 |
| 19 | strong_click3_60 | 61 | transition_click_40 | 103 | transition_rampdown_med_sharp2_50 |
| 20 | strong_click4_30 | 62 | transition_click_20 | 104 | transition_rampdown_short_sharp1_50 |
| 21 | medium_click1 | 63 | transition_click_10 | 105 | transition_rampdown_short_sharp2_50 |
| 22 | medium_click2_80 | 64 | transition_hum | 106 | transition_rampup_long_smooth1_50 |
| 23 | medium_click3_60 | 65 | transition_hum_80 | 107 | transition_rampup_long_smooth2_50 |
| 24 | sharp_tick1 | 66 | transition_hum_60 | 108 | transition_rampup_med_smooth1_50 |
| 25 | sharp_tick2_80 | 67 | transition_hum_40 | 109 | transition_rampup_med_smooth2_50 |
| 26 | sharp_tick3_60 | 68 | transition_hum_20 | 110 | transition_rampup_short_smooth1_50 |
| 27 | sh_dblclick_str | 69 | transition_hum_10 | 111 | transition_rampup_short_smooth2_50 |
| 28 | sh_dblclick_str_80 | 70 | transition_rampdown_long_smooth1 | 112 | transition_rampup_long_sharp1_50 |
| 29 | sh_dblclick_str_60 | 71 | transition_rampdown_long_smooth2 | 113 | transition_rampup_long_sharp2_50 |
| 30 | sh_dblclick_str_30 | 72 | transition_rampdown_med_smooth1 | 114 | transition_rampup_med_sharp1_50 |
| 31 | sh_dblclick_med | 73 | transition_rampdown_med_smooth2 | 115 | transition_rampup_med_sharp2_50 |
| 32 | sh_dblclick_med_80 | 74 | transition_rampdown_short_smooth1 | 116 | transition_rampup_short_sharp1_50 |
| 33 | sh_dblclick_med_60 | 75 | transition_rampdown_short_smooth2 | 117 | transition_rampup_short_sharp2_50 |
| 34 | sh_dblsharp_tick | 76 | transition_rampdown_long_sharp1 | 118 | long_buzz_for_programmatic_stopping |
| 35 | sh_dblsharp_tick_80 | 77 | transition_rampdown_long_sharp2 | 119 | smooth_hum1_50 |
| 36 | sh_dblsharp_tick_60 | 78 | transition_rampdown_med_sharp1 | 120 | smooth_hum2_40 |
| 37 | lg_dblclick_str | 79 | transition_rampdown_med_sharp2 | 121 | smooth_hum3_30 |
| 38 | lg_dblclick_str_80 | 80 | transition_rampdown_short_sharp1 | 122 | smooth_hum4_20 |
| 39 | lg_dblclick_str_60 | 81 | transition_rampdown_short_sharp2 | 123 | smooth_hum5_10 |
| 40 | lg_dblclick_str_30 | 82 | transition_rampup_long_smooth1 | | |
| 41 | lg_dblclick_med | 83 | transition_rampup_long_smooth2 | | |
| 42 | lg_dblclick_med_80 | 84 | transition_rampup_med_smooth1 | | |
### オプションの DRV2605L の定義
```
#define DRV_GREETING *sequence name or number*
```
触覚フィードバッグが有効な場合、キーボード起動時に特定のシーケンスに合わせて振動します。以下の定義を使って選択することができます:
```
#define DRV_MODE_DEFAULT *sequence name or number*
```
これにより HPT_RST がアクティブモードとして設定するシーケンスを設定します。未定義の場合、HPT_RST が押された時にモードが 1 に設定されます。
### DRV2605L 連続触覚モード
このモードは強さを増減するオプションを使って連続触覚フィードバッグを設定します。

View File

@ -0,0 +1,62 @@
# HD44780 LCD ディスプレイ
<!---
original document: 0.8.123:docs/feature_hd44780.md
git diff 0.8.123 HEAD -- docs/feature_hd44780.md | cat
-->
これは Peter Fleury の LCD ライブラリの統合です。このページは基本について説明します。[詳細なドキュメントについてはこのページをご覧ください](http://homepage.hispeed.ch/peterfleury/doxygen/avr-gcc-libraries/group__pfleury__lcd.html) (訳注)原文のリンク先のページは、サービスの終了に伴って削除されています。移行先は (http://www.peterfleury.epizy.com/doxygen/avr-gcc-libraries/group__pfleury__lcd.html) と思われます。
HD44780 ディスプレイのサポートを有効にするには、キーボードの `rules.mk``HD44780_ENABLE` フラグを yes に設定します。
## 設定
ディスプレイで使用されるピンとディスプレイの行と列の数を、キーボードの `config.h` に設定する必要があります。
HD44780 のラベルが付いたセクションのコメントを外し、必要に応じてパラメータを変更します。
````
/*
* HD44780 LCD ディスプレイ設定
*/
#define LCD_LINES 2 //< ディスプレイの表示行数
#define LCD_DISP_LENGTH 16 //< ディスプレイの行ごとの表示文字数
#define LCD_IO_MODE 1 //< 0: メモリマップモード 1: IO ポートモード
#if LCD_IO_MODE
#define LCD_PORT PORTB //< LCD 行のためのポート
#define LCD_DATA0_PORT LCD_PORT //< 4ビットデータビット 0 のポート
#define LCD_DATA1_PORT LCD_PORT //< 4ビットデータビット 1 のポート
#define LCD_DATA2_PORT LCD_PORT //< 4ビットデータビット 2 のポート
#define LCD_DATA3_PORT LCD_PORT //< 4ビットデータビット 3 のポート
#define LCD_DATA0_PIN 4 //< 4ビットデータビット 0 のピン
#define LCD_DATA1_PIN 5 //< 4ビットデータビット 1 のピン
#define LCD_DATA2_PIN 6 //< 4ビットデータビット 2 のピン
#define LCD_DATA3_PIN 7 //< 4ビットデータビット 3 のピン
#define LCD_RS_PORT LCD_PORT //< RS 線のためのポート
#define LCD_RS_PIN 3 //< RS 線のためのピン
#define LCD_RW_PORT LCD_PORT //< RW 線のためのポート
#define LCD_RW_PIN 2 //< RW 線のためのピン
#define LCD_E_PORT LCD_PORT //< Enable 線のためのポート
#define LCD_E_PIN 1 //< Enable 線のためのピン
#endif
````
他のプロパティを設定する必要がある場合は、それらを `quantum/hd44780.h` からコピーし、`config.h` に設定することができます。(訳注)`quantum/hd44780.h` は `drivers/avr/hd44780.h` の間違いではないかと思われます。
## 使用法
ディスプレイを初期化するには、以下のパラメータのうちの1つを使って `lcd_init()` を呼び出します:
````
LCD_DISP_OFF : ディスプレイオフ
LCD_DISP_ON : ディスプレイオン、カーソルオフ
LCD_DISP_ON_CURSOR : ディスプレイオン、カーソルオン
LCD_DISP_ON_CURSOR_BLINK : ディスプレイオン、点滅カーソル
````
これはキーボードの `matrix_init_kb` またはキーマップの `matrix_init_user` で行うのが最適です。
使用前にディスプレイをクリアすることをお勧めします。
そのためには、`lcd_clrscr()` を呼びます。
ディスプレイに何かを表示するには、最初に `lcd_gotoxy(column, line)` を呼びます。最初の行の先頭に移動するには、`lcd_gotoxy(0, 0)` を呼び出し、その後 `lcd_puts("example string")` を使って文字列を出力します。
ディスプレイを制御することができる、より多くのメソッドがあります。[詳細なドキュメントについてはリンクされたページをご覧ください](http://homepage.hispeed.ch/peterfleury/doxygen/avr-gcc-libraries/group__pfleury__lcd.html) (訳注)原文のリンク先のページは、サービスの終了に伴って削除されています。移行先は (http://www.peterfleury.epizy.com/doxygen/avr-gcc-libraries/group__pfleury__lcd.html) と思われます。

View File

@ -0,0 +1,27 @@
# キーロック
<!---
original document: 0.8.134:docs/feature_key_lock.md
git diff 0.8.134 HEAD -- docs/feature_key_lock.md | cat
-->
特定のキーを長時間押すことが必要になる場合があります。キーロックは次に押すキーを押したままにします。もう一度押すと、リリースされます。
いくつかの文を全て大文字で入力する必要があるとしましょう。`KC_LOCK` を押し、次にシフトを押します。これで、シフトは次にタップするまで押していると見なされます。キーロックを Caps Lock と考えることができますが、さらに強力です。
## 使用法
最初に `rules.mk``KEY_LOCK_ENABLE = yes` を設定することでキーロックを有効にします。次に、キーマップでキーを選択し、それをキーコード `KC_LOCK` に割り当てます。
## キーコード
| キーコード | 説明 |
|---------|--------------------------------------------------------------|
| `KC_LOCK` | キーが再び押されるまで次のキーを押したままにします。 |
## 注意事項
キーロックは、標準アクションキーと[ワンショットモディファイア](ja/one_shot_keys.md)キー (例えば、Shift を `OSM(KC_LSFT)` と定義した場合)のみを押し続けることができます。
これは、QMK の特殊機能(ワンショットモディファイアを除く)、または `KC_LPRN` のような shift を押されたキーのバージョンは含みません。[基本的なキーコード](ja/keycodes_basic.md)リストにある場合、押したままにすることができます。
レイヤーの切り替えは、キーロックを解除しません。

View File

@ -1,13 +1,13 @@
# 書き込みの手順とブートローダ情報
<!---
original document: 7494490d6:docs/flashing.md
git diff 7494490d6 HEAD -- docs/flashing.md | cat
original document: 0.8.62:docs/flashing.md
git diff 0.8.62 HEAD -- docs/flashing.md | cat
-->
キーボードが使用するブートローダにはかなり多くの種類があり、ほぼ全てが異なる書き込みの方法を使います。幸いなことに、[QMK Toolbox](https://github.com/qmk/qmk_toolbox/releases) のようなプロジェクトは、あまり深く考える必要無しに様々なタイプと互換性を持つことを目指していますが、この文章では様々なタイプのブートローダとそれらを書き込むために利用可能な方法について説明します。
`rules.mk``BOOTLOADER` 変数で選択されたブートローダがある場合、QMK は .hex ファイルがデバイスに書き込むのに適切なサイズかどうかを自動的に計算し、合計サイズをバイト単位で(最大値とともに)出力します。この処理を手動で実行するには、`check-size` を付けてコンパイルします。例えば、`make planck/rev4:default:check-size`。
`rules.mk``BOOTLOADER` 変数で選択されたブートローダがある場合、QMK は .hex ファイルがデバイスに書き込むのに適切なサイズかどうかを自動的に計算し、合計サイズをバイト単位で(最大値とともに)出力します。
## DFU
@ -31,7 +31,6 @@ BOOTLOADER = atmel-dfu
* [QMK Toolbox](https://github.com/qmk/qmk_toolbox/releases) (推奨の GUI)
* QMK の [dfu-programmer](https://github.com/dfu-programmer/dfu-programmer) / `:dfu` (推奨のコマンドライン)
* [Atmel の Flip](http://www.microchip.com/developmenttools/productdetails.aspx?partno=flip) (非推奨)
書き込み手順:
@ -105,7 +104,7 @@ BOOTLOADER = caterina
make <keyboard>:<keymap>:avrdude
#### Caterina コマンド
### Caterina コマンド
ファームウェアを DFU デバイスに書き込むために使用できる DFU コマンドがいくつかあります。

View File

@ -1,146 +0,0 @@
# ビルドツールのインストール
<!---
original document: 5a02cc00a:docs/getting_started_build_tools.md
git diff 5a02cc00a HEAD -- docs/getting_started_build_tools.md | cat
-->
このページは QMK のためのビルド環境のセットアップを説明します。これらの手順は (atmega32u4 のような) AVR プロセッサを対象としてします。
<!-- FIXME: We should have ARM instructions somewhere. -->
**注意:** ここが初めての場合は、[QMK 初心者ガイド](ja/newbs.md)ページを調べてください。
続ける前に、`make git-submodule` を実行して、サブモジュール(サードパーティライブラリ)が最新であることを再確認してください。
## Linux
常に最新の状態を保つためには、単に `sudo util/qmk_install.sh` を実行してください。全ての必要な依存関係が常にインストールされるはずです。**これは `apt-get upgrade` を実行します。**
手動でインストールすることもできますが、このドキュメントは常に全ての要件を満たしているとは限りません。
現在の要件は以下の通りですが、何をしようとしているかによっては全てが必要とは限りません。また、一部のシステムではパッケージとして全ての依存関係が利用できるとは限らず、あるいは名前が異なる場合があるかもしれません。
```
build-essential
gcc
unzip
wget
zip
gcc-avr
binutils-avr
avr-libc
dfu-programmer
dfu-util
gcc-arm-none-eabi
binutils-arm-none-eabi
libnewlib-arm-none-eabi
git
```
好みのパッケージマネージャを使って依存関係をインストールします。
Debian / Ubuntu の例:
sudo apt-get update
sudo apt-get install gcc unzip wget zip gcc-avr binutils-avr avr-libc dfu-programmer dfu-util gcc-arm-none-eabi binutils-arm-none-eabi libnewlib-arm-none-eabi
Fedora / Red Hat の例:
sudo dnf install gcc unzip wget zip dfu-util dfu-programmer avr-gcc avr-libc binutils-avr32-linux-gnu arm-none-eabi-gcc-cs arm-none-eabi-binutils-cs arm-none-eabi-newlib
Arch / Manjaro の例:
pacman -S base-devel gcc unzip wget zip avr-gcc avr-binutils avr-libc dfu-util arm-none-eabi-gcc arm-none-eabi-binutils arm-none-eabi-newlib git dfu-programmer dfu-util
## Nix
[NixOS](https://nixos.org/) の場合、あるいは Linux または MacOS に Nix をインストールした場合は、ビルド環境を取得するためにリポジトリのルートで `nix-shell` を実行します。
デフォルトでは、これは AVR と ARM の両方のためのコンパイラをダウンロードします。両方が必要ではない場合は、`avr` あるいは `arm` 引数を無効にします。例えば:
nix-shell --arg arm false
## macOS
[Homebrew](http://brew.sh/) を使っている場合は、以下のコマンドを使うことができます:
brew tap osx-cross/avr
brew tap osx-cross/arm
brew update
brew install avr-gcc@8
brew link --force avr-gcc@8
brew install dfu-programmer
brew install dfu-util
brew install arm-gcc-bin@8
brew link --force arm-gcc-bin@8
brew install avrdude
これはお勧めの方法です。homebrew が無い場合は、[インストールしてください!](http://brew.sh/) コマンドラインで作業する人にとってとても価値があります。`avr-gcc@8` の homebrew でのインストール中、`make` と `make install` 部分は20分以上かかり、CPU使用率が高くなることに注意してください。
## msys2 を使った Windows (推奨) :id=windows-with-msys2-recommended
Windows Vista 以降のバージョン(7および10でテスト済み)について、使用するのに最適な環境は [msys2](http://www.msys2.org) です。
* msys2 をダウンロードし、こちらの指示に従ってインストールしてください: http://www.msys2.org
* ``MSYS2 MingGW 64-bit`` のショートカットを開きます
* QMK リポジトリに移動します。例えば、c ドライブのルートにある場合:
* `$ cd /c/qmk_firmware`
* `util/qmk_install.sh` を実行し、指示に従います
## Windows 10 (非推奨)
Windows 10 の古い手順です。[上記の概要のように MSYS2](#windows-with-msys2-recommended) を使うことをお勧めします。
### Creators Update
Creators Update 以降の Windows 10 の場合、ファームウェアを直接ビルドして書き込むことができます。Creators Update の前は、ビルドだけが可能でした。まだそうではないか、不明な場合は、[これらの指示](https://support.microsoft.com/en-us/instantanswers/d4efb316-79f0-1aa1-9ef3-dcada78f3fa0/get-the-windows-10-creators-update)に従ってください。
### Linux 用の Windows Subsystem
Creators Update に加えて、Linux 用の Windows 10 Subystem が必要ですので、[これらの指示](http://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/)に従ってインストールしてください。Anniversary update からの Linux 用の Windows 10 Subsystem が既にある場合、一部のキーボードは 14.04LTS に含まれるツールチェーンを使ってコンパイルしないため、16.04LTS に[アップグレード](https://betanews.com/2017/04/14/upgrade-windows-subsystem-for-linux/)することをお勧めします。`sudo do-release-upgrade` メソッドを選択した場合は、自分が何をしているかを知る必要があることに注意してください。
### Git
すでに Windows ファイルシステムにリポジトリをクローンしている場合は、この章を無視することができます。
WSL Git では**なく**、Windows 用の通常の Git を使って Windows ファイルシステムにリポジトリをクローンする必要があります。以前に Git をインストールしたことが無ければ、[ダウンロード](https://git-scm.com/download/win)し、インストールしてください。次に[セットアップします](https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup)。特に貢献する予定がある場合は、eメールとユーザ名をセットアップすることが重要です。
Git がインストールされたら、Git Bash コマンドを開き、QMK をクローンしたい場所へディレクトリを変更します: スラッシュを使う必要があり、c ドライブは `/c/path/to/where/you/want/to/go` のようにアクセスされることに注意してください。次に、`git clone --recurse-submodules https://github.com/qmk/qmk_firmware` を実行します。これは現在のフォルダのサブディレクトリとして新しいフォルダ `qmk_firmware` を作成します。
### ツールチェーンのセットアップ
ツールチェーンのセットアップは Linux 用の Windows サブシステムを介して行われ、手順は完全に自動化されています。全てを手動で行いたい場合は、スクリプト以外の手順はありませんが、常に issue を開いて詳細情報を求めることができます。
1. スタートメニューから "Bash On Ubuntu On Windows" を開いてください。
2. クローンした `qmk_firmware` ディレクトリに移動します。パスは WSL 内で `/mnt/` から始まることに注意してください。つまり、例えば `cd /mnt/c/path/to/qmk_firmware` と書く必要があります。
3. `util/wsl_install.sh` を実行し、画面上の手順に従います。
4. Bash コマンドウィンドウを閉じ、再び開きます。
5. ファームウェアをコンパイルし書き込む準備ができました!
### 心に留めておくべき幾つかの重要なこと
* 全ての最新の更新を取得するために `util/wsl_install.sh` を再実行することができます。
* WSL は外部で実行可能ファイルを実行できないため、QMK リポジトリは Windows ファイルシステム上にある必要があります。
* WSL Git は Windows の Git と互換性が**無い**ため、全ての Git 操作には、Windows Git Bash あるいは windows Git GUI を使ってください。
* WSL 内あるいは普通に Windows を使ってファイルを編集できますが、makefile あるいはシェルスクリプトを編集する場合は、行末をUnix形式にしてファイルを保存するエディタを使うようにしてください。そうでなければコンパイルは機能しないかもしれません。
## Docker
これが少し複雑な場合は、Docker があなたが必要とするすぐに使える解決法かもしれません。[Docker CE](https://docs.docker.com/install/#supported-platforms) をインストールした後で、キーボード/キーマップをビルドするために `qmk_firmware` ディレクトリから以下のコマンドを実行します:
```bash
util/docker_build.sh keyboard:keymap
# 例えば: util/docker_build.sh ergodox_ez:steno
```
これは目的のキーボード/キーマップをコンパイルし、結果として書き込み用に `.hex` あるいは `.bin` ファイルを QMK ディレクトリの中に残します。`:keymap` が省略された場合は全てのキーマップが使われます。パラメータの形式は、`make` を使ってビルドする時と同じであることに注意してください。
スクリプトをパラメータ無しで開始することもできます。この場合、1つずつビルドパラメータを入力するように求められます。これが使いやすいと思うかもしれません:
```bash
util/docker_build.sh
# パラメータを入力として読み込みます (空白にすると全てのキーボード/キーマップ)
```
`target` を指定することで Docker から直接キーボードをビルドし_かつ_書き込むためのサポートもあります。
```bash
util/docker_build.sh keyboard:keymap:target
# 例えば: util/docker_build.sh planck/rev6:default:flash
```
Linux を使っている場合は、これはそのままで動作するはずです。Windows と macOS では、実行するのに [Docker Machine](http://gw.tnode.com/docker/docker-machine-with-usb-support-on-windows-macos/) が必要です。これはセットアップが面倒なので、お勧めではありません: 代わりに [QMK Toolbox](https://github.com/qmk/qmk_toolbox) を使ってください。
!> Docker for Windows は[Hyper-V](https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v) を有効にする必要があります。これは、Windows 7、Windows 8 および **Windows 10 Home** のような Hyper-V を搭載していない Windows のバージョンでは機能しないことを意味します。
## Vagrant
ファームウェアをビルドするのに問題がある場合は、Vagrant と呼ばれるツールを試してみることができます。それは、ファームウェアをビルドする準備ができた既知の構成を搭載した仮想コンピュータをセットアップします。OLKB はこの仮想コンピュータのためのファイルをホストしません。Vagrant をセットアップする方法の詳細は、[vagrant ガイド](ja/getting_started_vagrant.md)にあります。

View File

@ -1,20 +0,0 @@
# 助けを得る
<!---
original document: d598f01cb:docs/getting_started_getting_help.md
git diff d598f01cb HEAD -- docs/getting_started_getting_help.md | cat
-->
QMK に関して助けを得るための多くのリソースがあります。
## リアルタイム チャット
メインの [Discord server](https://discord.gg/Uq7gcHh) で QMK の開発者とユーザを見つけることができます。サーバには、ファームウェア、Toolbox、ハードウェアおよび Configurator についてチャットするための特定のチャンネルがあります。
## OLKB Subreddit
公式の QMK フォーラムは [reddit.com](https://reddit.com) の [/r/olkb](https://reddit.com/r/olkb) です。
## Github Issues
[GitHub で issue](https://github.com/qmk/qmk_firmware/issues) を開くことができます。issue が長期的な議論あるいはデバッグを必要とする場合は、特に便利です。

View File

@ -1,8 +1,8 @@
# QMK で Github を使う方法
<!---
original document: d598f01cb:docs/getting_started_github.md
git diff d598f01cb HEAD -- docs/getting_started_github.md | cat
original document: 0.8.82:docs/getting_started_github.md
git diff 0.8.82 HEAD -- docs/getting_started_github.md | cat
-->
Github は慣れていない人には少し注意が必要です - このガイドは、QMK におけるフォーク、クローン、プルリクエストのサブミットの各ステップについて説明します。

View File

@ -1,8 +1,8 @@
# はじめに
<!---
original document: d598f01cb:docs/getting_started_introduction.md
git diff d598f01cb HEAD -- docs/getting_started_introduction.md | cat
original document: 0.8.82:docs/getting_started_introduction.md
git diff 0.8.82 HEAD -- docs/getting_started_introduction.md | cat
-->
このページでは、QMK プロジェクトで作業するために知っておくべき基本的な情報について説明しようと思います。Unix シェルの操作に精通していることを前提としていますが、C について、または make を使ったコンパイルについて精通しているとは想定していません。

View File

@ -25,7 +25,6 @@ Vagrant 以外に、適切なプロバイダがインストールされ、その
* [QMK Toolbox](https://github.com/qmk/qmk_toolbox) (推奨)
* [Teensy ローダー](https://www.pjrc.com/teensy/loader.html)
* [Atmel FLIP](http://www.atmel.com/tools/flip.aspx)
コマンドラインでプログラムしたい場合は、Vagranfile の ['modifyvm'] 行のコメントを解除して Linux への USB パススルーを有効にし、dfu-util/dfu-programmer のようなコマンドラインツールを使ってプログラムすることができます。あるいは Teensy CLI バージョンをインストールすることができます。

189
docs/ja/hardware_avr.md Normal file
View File

@ -0,0 +1,189 @@
# AVR マイコンを使ったキーボード
<!---
grep --no-filename "^[ ]*git diff" docs/ja/*.md | sh
original document: c9e3fa6f7:docs/hardware_avr.md
git diff c9e3fa6f7 HEAD -- docs/hardware_avr.md | cat
-->
このページでは QMK における AVR マイコンのサポートについて説明します。AVR マイコンには、Atmel 社製の atmega32u4、atmega32u2、at90usb1286 やその他のマイコンを含みます。AVR マイコンは、簡単に動かせるよう設計された8ビットの MCU です。キーボードでよく使用される AVR マイコンには USB 機能や大きなキーボードマトリックスのためのたくさんの GPIO を搭載しています。これらは、現在、キーボードで使われる最も一般的な MCU です。
まだ読んでない場合は、[キーボードガイドライン](ja/hardware_keyboard_guidelines.md) を読んで、キーボードを QMK にどのように適合させるかを把握する必要があります。
## AVR を使用したキーボードを QMK に追加する
QMK には AVR を使ったキーボードでの作業を簡略化するための機能が多数あります。大体のキーボードでは1行もコードを書く必要がありません。まずはじめに、`util/new_keyboard.sh` スクリプトを実行します。
```
$ ./util/new_keyboard.sh
Generating a new QMK keyboard directory
Keyboard Name: mycoolkb
Keyboard Type [avr]:
Your Name [John Smith]:
Copying base template files... done
Copying avr template files... done
Renaming keyboard files... done
Replacing %KEYBOARD% with mycoolkb... done
Replacing %YOUR_NAME% with John Smith... done
Created a new keyboard called mycoolkb.
To start working on things, cd into keyboards/mycoolkb,
or open the directory in your favourite text editor.
```
これにより、新しいキーボードをサポートするために必要なすべてのファイルが作成され、デフォルト値で設定が入力されます。あとはあなたのキーボード用にカスタマイズするだけです。
## `readme.md`
このファイルではキーボードに関する説明を記述します。[キーボード Readme テンプレート](ja/documentation_templates.md#keyboard-readmemd-template)に従って `readme.md` を記入して下さい。`readme.md` の上部に画像を配置することをお勧めします。画像は [Imgur](http://imgur.com) のような外部サービスを利用してください。
## `<keyboard>.c`
このファイルではキーボード上で実行される全てのカスタマイズされたロジックを記述します。多くのキーボードの場合、何も書く必要はありません。
[機能のカスタマイズ](ja/custom_quantum_functions.md)で、カスタマイズされたロジックの記述方法を詳しく学ぶことが出来ます。
## `<keyboard>.h`
このファイルでは、[レイアウト](ja/feature_layouts.md)を定義します。最低限、以下のような `#define LAYOUT` を記述する必要があります。
```c
#define LAYOUT( \
k00, k01, k02, \
k10, k11 \
) { \
{ k00, k01, k02 }, \
{ k10, KC_NO, k11 }, \
}
```
`LAYOUT` マクロの前半部ではキーの物理的な配置を定義します。後半部ではスイッチが接続されるマトリックスを定義します。これによってマトリックス配線の順とは異なるキーを物理的に配置できます。
それぞれの `k__` 変数はユニークでなければいけません。通常は `k<row><col>` というフォーマットに従って記述されます。
物理マトリックス(後半部)では、`MATRIX_ROWS` に等しい行数が必要であり、各行には正確に `MATRIX_COLS` と等しい数の要素が含まれていなければいけません。物理キーが存在しない場合は、`KC_NO` を使用して空白を埋める事ができます。
## `config.h`
`config.h` ファイルには、ハードウェアや機能の設定を記述します。このファイルで設定できるオプションは列挙しきれないほどたくさんあります。利用できるオプションの概要は[設定オプション](ja/config_options.md)を参照して下さい。
### ハードウェアの設定
`config.h` の先頭には USB に関する設定があります。これらはキーボードが OS からどのように見えるかを制御しています。変更する理由がない場合は、`VENDOR_ID` を `0xFEED` のままにしておく必要があります。`PRODUCT_ID` にはまだ使用されていない番号を選ばなければいけません。
`MANUFACTURER``PRODUCT``DESCRIPTION` をキーボードにあった設定に変更します。
```c
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x6060
#define DEVICE_VER 0x0001
#define MANUFACTURER You
#define PRODUCT my_awesome_keyboard
#define DESCRIPTION A custom keyboard
```
?> Windows や macOS では、`MANUFACTURER` と `PRODUCT` が USBデバイスのリストに表示されます。Linux 上の `lsusb` では、代わりにデフォルトで [USB ID Repository](http://www.linux-usb.org/usb-ids.html) によって維持されているリストからこれらを取得します。`lsusb -v` を使用するとデバイスから示された値を表示します。また、接続したときのカーネルログにも表示されます。
### キーボードマトリックスの設定
`config.h` ファイルの次のセクションではキーボードのマトリックスを扱います。最初に設定するのはマトリックスのサイズです。これは通常、常にではありませんが、物理キー配置と同じ数の行・列になります。
```c
#define MATRIX_ROWS 2
#define MATRIX_COLS 3
```
マトリックスのサイズを定義したら、MCU のどのピンを行と列に接続するかを定義します。そのためにはピンの名前を指定するだけです。
```c
#define MATRIX_ROW_PINS { D0, D5 }
#define MATRIX_COL_PINS { F1, F0, B0 }
#define UNUSED_PINS
```
`MATRIX_ROW_PINS` の要素の数は `MATRIX_ROWS` に定義した数と同じでなければいけません。同様に `MATRIX_COL_PINS` の要素の数も `MATRIX_COLS` と等しい必要があります。`UNUSED_PINS` は定義しなくても問題ありませんがどのピンが空いているのか記録しておきたい場合は定義できます。
最後にダイオードの方向を定義します。これには `COL2ROW``ROW2COL` を設定します。
```c
#define DIODE_DIRECTION COL2ROW
```
#### ダイレクトピンマトリックス
各スイッチが、列と行のピンを共有する代わりに、それぞれ個別のピンとグランドに接続されているキーボードを定義するには、`DIRECT_PINS` を使用します。マッピング定義では、列と行の各スイッチのピンを左から右の順に定義します。`MATRIX_ROWS` と `MATRIX_COLS` 内のサイズに準拠する必要があり、空白を埋めるには `NO_PIN` を使用します。これによって `DIODE_DIRECTION`、`MATRIX_ROW_PINS`、`MATRIX_COL_PINS` の動作を上書きします。
```c
// #define MATRIX_ROW_PINS { D0, D5 }
// #define MATRIX_COL_PINS { F1, F0, B0 }
#define DIRECT_PINS { \
{ F1, E6, B0, B2, B3 }, \
{ F5, F0, B1, B7, D2 }, \
{ F6, F7, C7, D5, D3 }, \
{ B5, C6, B6, NO_PIN, NO_PIN } \
}
#define UNUSED_PINS
/* COL2ROW, ROW2COL */
//#define DIODE_DIRECTION
```
### バックライトの設定
QMK では GPIO ピンでのバックライト制御をサポートしています。これらの設定を選択して MCU から制御できます。詳しくは[バックライト](ja/feature_backlight.md)を参照して下さい。
```c
#define BACKLIGHT_PIN B7
#define BACKLIGHT_LEVELS 3
#define BACKLIGHT_BREATHING
#define BREATHING_PERIOD 6
```
### その他の設定オプション
`config.h` で設定・調整できる機能はたくさんあります。詳しくは[設定オプション](ja/config_options.md)を参照して下さい。
## `rules.mk`
`rules.mk` ファイルを使用して、ビルドするファイルや有効にする機能をQMKへ指示します。atmega32u4 を使っている場合、これらのオプションはデフォルトのままにしておくことが出来ます。他の MCU を使用している場合はいくつかのパラメータを調整する必要があります。
### MCU オプション
このオプションではビルドする CPU をビルドシステムに指示します。これらの設定を変更する場合は非常に注意して下さい。キーボードを操作不能にしてしまう可能性があります。
```make
MCU = atmega32u4
F_CPU = 16000000
ARCH = AVR8
F_USB = $(F_CPU)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
```
### ブートローダー
ブートローダーは MCU に保存されているプログラムをアップグレードするための特別なセクションです。キーボードのレスキューパーティションのようなものだと考えて下さい。
#### Teensy Bootloader の例
```make
BOOTLOADER = halfkay
```
#### Atmel DFU Loader の例
```make
BOOTLOADER = atmel-dfu
```
#### Pro Micro Bootloader の例
```make
BOOTLOADER = caterina
```
### ビルドオプション
`rules.mk` にはオン・オフできるたくさんの機能があります。詳細なリストと説明は[設定オプション](ja/config_options.md#feature-options)を参照して下さい。

View File

@ -0,0 +1,45 @@
# QMK ハードウェアドライバー
<!---
grep --no-filename "^[ ]*git diff" docs/ja/*.md | sh
original document: c9e3fa6f7:docs/hardware_drivers.md
git diff c9e3fa6f7 HEAD -- docs/hardware_drivers.md | cat
-->
QMK はたくさんの異なるハードウェアで使われています。最も一般的な MCU とマトリックス構成をサポートしていますが、キーボードへ他のハードウェアを追加し制御するためのドライバーもいくつか用意されています。例えば、マウスやポインティングデバイス、分割キーボード用の IO エキスパンダ、Bluetooth モジュール、LCD、OLED、TFT 液晶などがあります。
<!-- FIXME: This should talk about how drivers are integrated into QMK and how you can add your own driver.
# Driver System Overview
-->
# 使用できるドライバー
## ProMicro (AVR のみ)
ProMicro のピンを AVR の名前ではなく、Arduino の名前で指定できます。この部分はより詳しく文書化される必要があります。もしこれを使用したい場合にコードを読んでも分からない場合、[issue を開く](https://github.com/qmk/qmk_firmware/issues/new)を通して助けることができるかもしれません。
## SSD1306 OLED ドライバー
SSD1306 ベースの OLED ディスプレイのサポート。詳しくは[OLED ドライバ](ja/feature_oled_driver.md)を参照して下さい。
## uGFX
QMK 内で uGFX を使用して、キャラクタ LCD やグラフィック LCD、LED アレイ、OLED ディスプレイ、TFT 液晶や他のディスプレイを制御できます。この部分はより詳しく文書化される必要があります。もしこれを使用したい場合にコードを読んでも分からない場合、[issue を開く](https://github.com/qmk/qmk_firmware/issues/new)を通して助けることができるかもしれません。
## WS2812
WS2811/WS2812{a,b,c} LED のサポート。 詳しくは [RGB ライト](ja/feature_rgblight.md)を参照して下さい。
## IS31FL3731
最大2つの LED ドライバーのサポート。各ドライバーは、I2C を使って個別に LED を制御する2つのチャーリープレクスマトリックスを実装しています。最大144個の単色 LED か32個の RGB LED を使用できます。ドライバーの設定方法の詳細は[RGB マトリックス](ja/feature_rgb_matrix.md)を参照して下さい。
## IS31FL3733
拡張の余地がある最大1つの LED ドライバーのサポート。各ドライバーは192個の単色 LED か64個の RGB LED を制御できます。ドライバーの設定方法の詳細は [RGB マトリックス](ja/feature_rgb_matrix.md)を参照して下さい。
## 24xx シリーズ 外部 I2C EEPROM
オンチップ EEPROM の代わりに使用する I2C ベースの外部 EEPROM のサポート。ドライバーの設定方法の詳細は [EEPROM ドライバー](ja/eeprom_driver.md)を参照して下さい。

View File

@ -0,0 +1,155 @@
# QMK キーボードガイドライン
<!---
grep --no-filename "^[ ]*git diff" docs/ja/*.md | sh
original document: c9e3fa6f7:docs/hardware_keyboard_guidelines.md
git diff c9e3fa6f7 HEAD -- docs/hardware_keyboard_guidelines.md | cat
-->
QMK は開始以来、コミュニティにおけるキーボードの作成や保守に貢献しているあなたのような人たちのおかげで飛躍的に成長しました。私たちが成長するにつれて、うまくやるためのいくつかのパターンを発見しました。他の人たちがあなたの苦労の恩恵を受けやすくするため、それにあわせてもらえるようお願いします。
## あなたのキーボード/プロジェクトの名前を決める
キーボードの名前は全て小文字で、アルファベット、数字、アンダースコア(`_`)のみで構成されています。アンダースコア(`_`)で始めてはいけません。スラッシュ(`/`)はサブフォルダの区切り文字として使用されます。
`test`、`keyboard`、`all` はmakeコマンド用に予約されており、キーボードまたはサブフォルダ名として使用することは出来ません。
正しい例:
* `412_64`
* `chimera_ortho`
* `clueboard/66/rev3`
* `planck`
* `v60_type_r`
## サブフォルダ
QMK では、まとめるためや同じキーボードのリビジョン間でコードを共有するためにサブフォルダを使用します。フォルダは最大4階層までネストできます。
qmk_firmware/keyboards/top_folder/sub_1/sub_2/sub_3/sub_4
サブフォルダ内に `rules.mk` ファイルが存在するとコンパイル可能なキーボードとして見なされます。QMK Configurator から使用できるようになり、`make all` でテストされます。同じメーカーのキーボードをまとめるためにフォルダを使用している場合は `rules.mk` ファイルを置いてはいけません。
例:
Clueboard は、サブフォルダをまとめるためとキーボードのリビジョン管理の両方のために使用しています。
* [`qmk_firmware`](https://github.com/qmk/qmk_firmware/tree/master)
* [`keyboards`](https://github.com/qmk/qmk_firmware/tree/master/keyboards)
* [`clueboard`](https://github.com/qmk/qmk_firmware/tree/master/keyboards/clueboard) &larr; これはまとめるためのフォルダです。 `rules.mk` ファイルはありません。
* [`60`](https://github.com/qmk/qmk_firmware/tree/master/keyboards/clueboard/60) &larr; これはコンパイルできるキーボードです。`rules.mk` が存在します。
* [`66`](https://github.com/qmk/qmk_firmware/tree/master/keyboards/clueboard/66) &larr; これもコンパイルできるキーボードです。 デフォルトのリビジョンとして `DEFAULT_FOLDER``rev3` を指定しています。
* [`rev1`](https://github.com/qmk/qmk_firmware/tree/master/keyboards/clueboard/66/rev1) &larr; コンパイル可能: `make clueboard/66/rev1`
* [`rev2`](https://github.com/qmk/qmk_firmware/tree/master/keyboards/clueboard/66/rev2) &larr; コンパイル可能: `make clueboard/66/rev2`
* [`rev3`](https://github.com/qmk/qmk_firmware/tree/master/keyboards/clueboard/66/rev3) &larr; コンパイル可能: `make clueboard/66/rev3` もしくは `make clueboard/66`
## キーボードのフォルダ構成
キーボードは `qmk_firmware/keyboards/` 内にあり、前のセクションで説明したようにフォルダ名はキーボードの名前にする必要があります。このフォルダ内にはいくつかのファイルがあります。
* `readme.md`
* `info.json`
* `config.h`
* `rules.mk`
* `<keyboard_name>.c`
* `<keyboard_name>.h`
### `readme.md`
全てのプロジェクトにはどのようなキーボードなのか、誰が設計したか、どこで入手できるかを説明する `readme.md` ファイルが必要です。もしあれば、メーカーの Web サイトなどの詳しい情報へのリンクも含める必要があります。[キーボード readme テンプレート](ja/documentation_templates.md#keyboard-readmemd-template)を参考にして下さい。
### `info.json`
このファイルは [QMK API](https://github.com/qmk/qmk_api) から使用されます。[QMK Configurator](https://config.qmk.fm/) が必要とするキーボードの情報が含まれています。ここでメタデータを設定することもできます。詳しくは [info.json 形式](ja/reference_info_json.md) を参照して下さい。
### `config.h`
全てのプロジェクトには、マトリックスサイズ、製品名、USB VID/PID、説明、その他の設定などが含まれた `config.h` ファイルが必要です。一般に、このファイルを使用して常に機能するキーボードの重要な情報やデフォルトを設定します。
### `rules.mk`
このファイルが存在するということは、フォルダがキーボードであり、`make` コマンドで使用できることを意味します。ここでキーボードのビルド環境を構築し、デフォルトの機能を設定します。
### `<keyboard_name.c>`
ここではキーボードのカスタマイズされたコードを記述します。通常、初期化してキーボードのハードウェアを制御するコードを記述します。キーボードが LED やスピーカー、その他付属ハードウェアのないキーマトリックスのみで構成されている場合は空にできます。
通常、以下の関数がこのファイルで定義されます。
* `void matrix_init_kb(void)`
* `void matrix_scan_kb(void)`
* `bool process_record_kb(uint16_t keycode, keyrecord_t *record)`
* `void led_set_kb(uint8_t usb_led)`
### `<keyboard_name.h>`
このファイルはキーボードのマトリックスを定義するために使用されます。配列をキーボードの物理的なスイッチマトリックスに変換する C マクロを最低限1つ定義する必要があります。複数のレイアウトでキーボードを構築出来る場合は、追加のマクロを定義しなければいけません。
レイアウトが1つしかない場合は、このマクロは `LAYOUT` とします。
複数のレイアウトを定義する場合、物理的に構成することが出来なくとも、マトリックス上で全てのスイッチ位置をサポートする `LAYOUT_all` という名前の基本となるレイアウトが必要です。これは `default` キーマップで使用すべきマクロです。次に、他のレイアウトマクロを使用する `default_<layout>` といった追加のキーマップを用意します。これによって、他の人が定義されたレイアウトを使いやすくなります。
レイアウトマクロの名前は全て小文字で、先頭の `LAYOUT` だけ大文字です。
例として、ANSI と ISO をサポートする 60% PCB がある場合、以下のようにレイアウトとキーマップを定義出来ます。
| レイアウト名 | キーマップ名 | 説明 |
|-------------|-------------|-------------|
| LAYOUT_all | default | ISO と ANSI のどちらもサポートしたレイアウト |
| LAYOUT_ansi | default_ansi | ANSI レイアウト |
| LAYOUT_iso | default_iso | ISO レイアウト |
## 画像/ハードウェアのファイル
リポジトリのサイズを小さく保つために、いくつかの例外を除いて、どの形式のバイナリファイルも受け入れないようになりました。外部の場所(<https://imgur.com>など)でホストして、`readme.md` でリンクすることをおすすめします。
ハードウェアのファイル(プレートやケース、PCB など)は [qmk.fm リポジトリ](https://github.com/qmk/qmk.fm)に提供でき、[qmk.fm](http://qmk.fm) で利用可能になります。ダウンロード出来るファイルは `/<keyboard>/`(名前は上記と同じ形式)に保存され、`http://qmk.fm/<keyboard>/` で提供されます。ページは `/_pages/<keyboard>/` から生成されて、同じ場所で提供されます( .mdファイルはJekyllを通して .htmlファイル変換されます。`lets_split` ファイルを参照して下さい。
## キーボードのデフォルト設定
QMK が提供する機能の量を考えれば、新しいユーザーが混乱するのは当たり前です。キーボードのデフォルトファームウェアをまとめるなら、有効にする機能とオプションをハードウェアのサポートに必要な最低限のセットにすることをおすすめします。特定の機能に関するおすすめは以下の通りです。
### ブートマジックとコマンド
[ブートマジック](ja/feature_bootmagic.md) と[コマンド](ja/feature_command.md)は、ユーザーがキーボードを明白でない方法で制御出来るようにする2つの関連機能です。いずれかの機能を有効にする場合、この機能をどのように提供するかについて、よく考えることをおすすめします。この機能が必要なユーザーは、あなたのキーボードを最初のプログラムできるキーボードとして使用している初心者に影響を与えることなく、個人的なキーマップ内で有効に出来ることを覚えておきましょう。
新規ユーザーが遭遇する最も多い問題は、キーボードを接続している間に間違えてブートマジックをトリガーしてしまうことです。キーボードの下を持っているとき、知らない間に Alt とスペースバーを押して、これらのキーが交換されてしまったことに気づきます。デフォルトではこの機能を無効にすることをおすすめしますが、有効にする場合は、キーボードを接続している間に押し間違えないキーへ `BOOTMAGIC_KEY_SALT` を設定することを検討して下さい。
キーボードに2つの Shift キーがない場合は、`COMMAND_ENABLE = no` を指定していても `IS_COMMAND` が動作するデフォルトを設定しておくべきです。ユーザーがコマンドを有効化したときに使用するデフォルトが与えられます。
## カスタムキーボードプログラミング
[機能のカスタマイズ](ja/custom_quantum_functions.md)にあるようにキーボードのカスタム関数を定義できます。ユーザーも同様にその動作をカスタマイズしたいかもしれないということと、ユーザーにそれを可能にすることを忘れないで下さい。 `process_record_kb()`のようなカスタム関数を提供している場合、関数がその関数の `_user()` 版を呼び出すことを確認して下さい。また、その関数の`_user()` 版の戻り値を確認して、user が `true` を返した場合のみカスタムコードを実行しなければいけません。
## 生産しない/手配線 プロジェクト
プロトタイプや手配線によるものなど QMK を使用するどんなプロジェクトも受け入れますが、`/keyboards/` フォルダが乱雑になるのを防ぐために、`/keyboards/handwired/` を用意しています。いつかプロトタイプのプロジェクトが製品のプロジェクトになった時点でメインの `/keyboards/` フォルダへ移動します!
## エラーとしての警告
キーボードを開発するときは、全ての警告がエラーとして扱われることに注意して下さい。小さな警告が蓄積されて、将来大きなエラーを引き起こす可能性があります。(そして、警告を放っておくのは良くない習慣です)
## 著作権表示
別のプロジェクトを元にしてキーボードの設定をするものの同じコードを使用しない場合は、ファイル上部にある著作権表示を次の形式に従って自分の名前を表示するよう、更新して下さい。
Copyright 2017 Your Name <your@email.com>
他の人のコードを修正し、その変更が些細な部分のみであれば、著作権表示の名前をそのままにしておかないといけません。ファイルに対して重要な作業を行った場合、以下のようにあなたの名前を追加します。
Copyright 2017 Their Name <original_author@example.com> Your Name <you@example.com>
年はファイルが作成された最初の年にします。後年にそのファイルに対して作業が行われた場合、次のように2つ目の年を追加して反映することが出来ます。
Copyright 2015-2017 Your Name <you@example.com>
## ライセンス
QMK のコア部分は [GNU General Public License](https://www.gnu.org/licenses/licenses.en.html) でライセンスされます。AVR マイコン用のバイナリを提供する場合は、[GPLv2](https://www.gnu.org/licenses/old-licenses/gpl-2.0.html) か、[GPLv3](https://www.gnu.org/licenses/gpl.html) のどちらかから選択出来ます。ARM マイコン用のバイナリを提供する場合は、 [ChibiOS](http://www.chibios.org) の GPLv3 ライセンスに準拠するため、[GPL Version 3](https://www.gnu.org/licenses/gpl.html) を選択しなければいけません。
[uGFX](https://ugfx.io) を使用している場合は、[uGFX License](https://ugfx.io/license.html) に準拠する必要があります。uGFX を利用したデバイスを販売するには個別に商用ライセンスを取得しなければいけません。
## 技術的な詳細
キーボードを QMK で動作させるための詳細は[ハードウェア](ja/hardware.md)を参照して下さい!

View File

@ -1,38 +1,48 @@
# I2C マスタドライバ
# I2C マスタドライバ :id=i2c-master-driver
<!---
grep --no-filename "^[ ]*git diff" docs/ja/*.md | sh
original document: 85041ff05:docs/i2c_driver.md
git diff 85041ff05 HEAD -- docs/i2c_driver.md | cat
original document: 0.8.62:docs/i2c_driver.md
git diff 0.8.62 HEAD -- docs/i2c_driver.md | cat
-->
QMK で使われる I2C マスタドライバには、MCU 間のポータビリティを提供するための一連の関数が用意されています。
## 使用できる関数
## I2C アドレスについての重要なメモ :id=note-on-i2c-addresses
このドライバが期待する全てのアドレスは、アドレスバイトの上位7ビットにプッシュする必要があります。最下位ビットの設定(読み込み/書き込みを示す)は、それぞれの関数によって行われます。データシートやインターネットで列挙されているほとんど全ての I2C アドレスは、下位7ビットを占める7ビットとして表され、1ビット左(より上位)にシフトする必要があります。これは、ビット単位のシフト演算子 `<< 1` を使用して簡単に実行できます。
これは、呼び出しごとに以下の関数を実行するか、アドレスの定義で1度だけ実行するかどちらかで行うことができます。例えば、デバイスのアドレスが `0x18` の場合:
`#define MY_I2C_ADDRESS (0x18 << 1)`
I2C アドレスと他の技術詳細について、さらなる情報を得るためには https://www.robot-electronics.co.uk/i2c-tutorial を見てください。
## 使用できる関数 :id=available-functions
| 関数 | 説明 |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `void i2c_init(void);` | I2C ドライバを初期化します。他のあらゆるトランザクションを開始する前に、この関数を一度だけ呼ぶ必要があります。 |
| `uint8_t i2c_start(uint8_t address, uint16_t timeout);` | I2C トランザクションを開始します。アドレスは方向ビットのない7ビットスレーブアドレスです。 |
| `uint8_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout);` | I2C 経由でデータを送信します。アドレスは方向ビットのない7ビットスレーブアドレスです。トランザクションのステータスを返します。 |
| `uint8_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout);` | I2C 経由でデータを受信します。アドレスは方向ビットのない7ビットスレーブアドレスです。 `length` で指定した長さのバイト列を `data` に保存し、トランザクションのステータスを返します。 |
| `uint8_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);` | `i2c_transmit` と同様ですが、 `regaddr` でスレーブのデータ書き込み先のレジスタを指定します。 |
| `uint8_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);` | `i2c_receive` と同様ですが、 `regaddr` でスレーブのデータ読み込み先のレジスタを指定します。 |
| `uint8_t i2c_stop(void);` | I2C トランザクションを終了します。 |
| `i2c_status_t i2c_start(uint8_t address, uint16_t timeout);` | I2C トランザクションを開始します。アドレスは方向ビットのない7ビットスレーブアドレスです。 |
| `i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout);` | I2C 経由でデータを送信します。アドレスは方向ビットのない7ビットスレーブアドレスです。トランザクションのステータスを返します。 |
| `i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout);` | I2C 経由でデータを受信します。アドレスは方向ビットのない7ビットスレーブアドレスです。 `length` で指定した長さのバイト列を `data` に保存し、トランザクションのステータスを返します。 |
| `i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);` | `i2c_transmit` と同様ですが、 `regaddr` でスレーブのデータ書き込み先のレジスタを指定します。 |
| `i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout);` | `i2c_receive` と同様ですが、 `regaddr` でスレーブのデータ読み込み先のレジスタを指定します。 |
| `i2c_status_t i2c_stop(void);` | I2C トランザクションを終了します。 |
### 関数の戻り値
### 関数の戻り値 :id=function-return
`void i2c_init(void)` を除く上にあるすべての関数は、次の真理値表にある値を返します。
| 戻り値 | 説明 |
|--------|------------------------------|
| 0 | 処理が正常に実行されました。 |
| -1 | 処理に失敗しました。 |
| -2 | 処理がタイムアウトしました。 |
|戻り値の定数 | |説明 |
|--------------------|---|----------------------------|
|`I2C_STATUS_SUCCESS`|0 |処理が正常に実行されました。|
|`I2C_STATUS_ERROR` |-1 |処理に失敗しました。 |
|`I2C_STATUS_TIMEOUT`|-2 |処理がタイムアウトしました。|
## AVR
## AVR :id=avr
### 設定
### 設定 :id=avr-configuration
I2Cマスタドライバを設定するために、次の定義が使えます。
@ -43,11 +53,11 @@ I2Cマスタドライバを設定するために、次の定義が使えます
AVR は通常 I2C ピンとして使う GPIO が設定されているので、これ以上の設定は必要ありません。
## ARM
## ARM :id=arm
ARM の場合は、内部に ChibiOS I2C HAL ドライバがあります。この節では STM32 MCU を使用していると仮定します。
### 設定
### 設定 :id=arm-configuration
ARM MCU 用の設定はしばしば非常に複雑です。これは、多くの場合複数の I2C ドライバをさまざまなポートに対して割り当てられるためです。
@ -82,7 +92,7 @@ ChibiOS I2C ドライバの設定項目は STM32 MCU の種類に依存します
STM32F1xx, STM32F2xx, STM32F4xx, STM32L0xx, STM32L1xx では I2Cv1 が使われます。
STM32F0xx, STM32F3xx, STM32F7xx, STM32L4xx では I2Cv2 が使われます。
#### I2Cv1
#### I2Cv1 :id=i2cv1
STM32 MCU の I2Cv1 では、クロック周波数とデューティ比を次の変数で変更できます。詳しくは <https://www.playembedded.org/blog/stm32-i2c-chibios/#I2Cv1_configuration_structure> を参照してください。
@ -92,7 +102,7 @@ STM32 MCU の I2Cv1 では、クロック周波数とデューティ比を次の
| `I2C1_CLOCK_SPEED` | `100000` |
| `I2C1_DUTY_CYCLE` | `STD_DUTY_CYCLE` |
#### I2Cv2
#### I2Cv2 :id=i2cv2
STM32 MCU の I2Cv2 では、信号のタイミングパラメータを次の変数で変更できます。詳しくは <https://www.st.com/en/embedded-software/stsw-stm32126.html> を参照してください。
@ -111,11 +121,11 @@ STM32 MCU では GPIO ピンを設定するとき、別の「代替機能」モ
| `I2C1_SCL_PAL_MODE` | `4` |
| `I2C1_SDA_PAL_MODE` | `4` |
#### その他
#### その他 :id=other
`void i2c_init(void)` 関数は `weak` 属性が付いており、オーバーロードすることができます。この場合、上記で設定した変数は使用されません。可能な GPIO の設定については、 MCU のデータシートを参照してください。次に示すのは初期化関数の例です:
```C
```c
void i2c_init(void)
{
setPinInput(B6); // Try releasing special pins for a short time

View File

@ -1,14 +1,14 @@
# キーマップの概要
<!---
original document: 7494490d6:docs/keymap.md
git diff 7494490d6 HEAD -- docs/keymap.md | cat
original document: 0.8.62:docs/keymap.md
git diff 0.8.62 HEAD -- docs/keymap.md | cat
-->
QMK のキーマップは C のソースファイルの中で定義されます。そのデータ構造は配列の配列です。外側はレイヤーを要素とする配列で、レイヤーはキーを要素とする配列。ほとんどのキーボードは `LAYOUT()` マクロを定義して、この配列の配列を作成しやすくしています。
## キーマップとレイヤー
## キーマップとレイヤー :id=keymap-and-layers
QMKでは、**`const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS]`**は、**アクションコード**を保持している **16 bit** データの中でキーマップ情報の複数の**レイヤー**を保持します。最大で**32個のレイヤー**を定義することができます。
普通のキー定義の場合、**アクションコード**の上位8ビットは全て0で、下位8ビットは**キーコード**としてキーによって生成された USB HID usage コードを保持します。
@ -32,7 +32,8 @@ QMKでは、**`const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS]`**は
TMK の歴史的経緯から、キーマップに保存されたアクションコードは、一部のドキュメントではキーコードと呼ばれる場合があります。
### キーマップレイヤーステータス
### キーマップレイヤーステータス :id=keymap-layer-status
キーマップレイヤーの状態は、2つの32ビットパラメータによって決定されます。
* **`default_layer_state`** は、常に有効で参照される基本キーマップレイヤー (0-31) を示します (デフォルトレイヤー)。

View File

@ -175,11 +175,11 @@ See also: [Basic Keycodes](keycodes_basic.md)
|`KC_EXSEL` | |ExSel |
|`KC_LCTRL` |`KC_LCTL` |Left Control |
|`KC_LSHIFT` |`KC_LSFT` |Left Shift |
|`KC_LALT` | |Left Alt |
|`KC_LALT` |`KC_LOPT` |Left Alt (Option) |
|`KC_LGUI` |`KC_LCMD`, `KC_LWIN` |Left GUI (Windows/Command/Meta key) |
|`KC_RCTRL` |`KC_RCTL` |Right Control |
|`KC_RSHIFT` |`KC_RSFT` |Right Shift |
|`KC_RALT` |`KC_ALGR` |Right Alt (AltGr) |
|`KC_RALT` |`KC_ROPT`, `KC_ALGR` |Right Alt (Option/AltGr) |
|`KC_RGUI` |`KC_RCMD`, `KC_RWIN` |Right GUI (Windows/Command/Meta key) |
|`KC_SYSTEM_POWER` |`KC_PWR` |System Power Down |
|`KC_SYSTEM_SLEEP` |`KC_SLEP` |System Sleep |
@ -326,7 +326,7 @@ See also: [Key Lock](feature_key_lock.md)
## Layer Switching :id=layer-switching
See also: [Layer Switching](feature_advanced_keycodes.md#switching-and-toggling-layers)
See also: [Layer Switching](feature_layers.md#switching-and-toggling-layers)
|Key |Description |
|----------------|----------------------------------------------------------------------------------|
@ -378,11 +378,11 @@ See also: [Modifier Keys](feature_advanced_keycodes.md#modifier-keys)
|----------|-------------------------------|----------------------------------------------------|
|`LCTL(kc)`|`C(kc)` |Hold Left Control and press `kc` |
|`LSFT(kc)`|`S(kc)` |Hold Left Shift and press `kc` |
|`LALT(kc)`|`A(kc)` |Hold Left Alt and press `kc` |
|`LALT(kc)`|`A(kc)`, `LOPT(kc)` |Hold Left Alt and press `kc` |
|`LGUI(kc)`|`G(kc)`, `LCMD(kc)`, `LWIN(kc)`|Hold Left GUI and press `kc` |
|`RCTL(kc)`| |Hold Right Control and press `kc` |
|`RSFT(kc)`| |Hold Right Shift and press `kc` |
|`RALT(kc)`|`ALGR(kc)` |Hold Right Alt and press `kc` |
|`RALT(kc)`|`ROPT(kc)`, `ALGR(kc)` |Hold Right Alt and press `kc` |
|`RGUI(kc)`|`RCMD(kc)`, `LWIN(kc)` |Hold Right GUI and press `kc` |
|`SGUI(kc)`|`SCMD(kc)`, `SWIN(kc)` |Hold Left Shift and GUI and press `kc` |
|`LCA(kc)` | |Hold Left Control and Alt and press `kc` |
@ -401,11 +401,11 @@ See also: [Mod-Tap](mod_tap.md)
|`MT(mod, kc)`| |`mod` when held, `kc` when tapped |
|`LCTL_T(kc)` |`CTL_T(kc)` |Left Control when held, `kc` when tapped |
|`LSFT_T(kc)` |`SFT_T(kc)` |Left Shift when held, `kc` when tapped |
|`LALT_T(kc)` |`ALT_T(kc)` |Left Alt when held, `kc` when tapped |
|`LALT_T(kc)` |`LOPT_T(kc)`, `ALT_T(kc)`, `OPT_T(kc)` |Left Alt when held, `kc` when tapped |
|`LGUI_T(kc)` |`LCMD_T(kc)`, `LWIN_T(kc)`, `GUI_T(kc)`, `CMD_T(kc)`, `WIN_T(kc)`|Left GUI when held, `kc` when tapped |
|`RCTL_T(kc)` | |Right Control when held, `kc` when tapped |
|`RSFT_T(kc)` | |Right Shift when held, `kc` when tapped |
|`RALT_T(kc)` |`ALGR_T(kc)` |Right Alt when held, `kc` when tapped |
|`RALT_T(kc)` |`ROPT_T(kc)`, `ALGR_T(kc)` |Right Alt when held, `kc` when tapped |
|`RGUI_T(kc)` |`RCMD_T(kc)`, `RWIN_T(kc)` |Right GUI when held, `kc` when tapped |
|`SGUI_T(kc)` |`SCMD_T(kc)`, `SWIN_T(kc)` |Left Shift and GUI when held, `kc` when tapped |
|`LCA_T(kc)` | |Left Control and Alt when held, `kc` when tapped |
@ -531,6 +531,7 @@ See also: [Swap Hands](feature_swap_hands.md)
|`SH_MOFF` |Momentarily turns off swap. |
|`SH_TG` |Toggles swap on and off with every key press. |
|`SH_TT` |Toggles with a tap; momentary when held. |
|`SH_OS` |One shot swap hands: toggle while pressed or until next key press. |
## Unicode Support :id=unicode-support
@ -543,7 +544,7 @@ See also: [Unicode Support](feature_unicode.md)
|`XP(i, j)` | |Send Unicode code point at index `i`, or `j` if Shift/Caps is on|
|`UNICODE_MODE_FORWARD`|`UC_MOD` |Cycle through selected input modes |
|`UNICODE_MODE_REVERSE`|`UC_RMOD`|Cycle through selected input modes in reverse |
|`UNICODE_MODE_OSX` |`UC_M_OS`|Switch to macOS input |
|`UNICODE_MODE_MAC` |`UC_M_MA`|Switch to macOS input |
|`UNICODE_MODE_LNX` |`UC_M_LN`|Switch to Linux input |
|`UNICODE_MODE_WIN` |`UC_M_WI`|Switch to Windows input |
|`UNICODE_MODE_BSD` |`UC_M_BS`|Switch to BSD input (not implemented) |

View File

@ -112,11 +112,11 @@ The basic set of keycodes are based on the [HID Keyboard/Keypad Usage Page (0x07
|-----------|--------------------|------------------------------------|
|`KC_LCTRL` |`KC_LCTL` |Left Control |
|`KC_LSHIFT`|`KC_LSFT` |Left Shift |
|`KC_LALT` | |Left Alt |
|`KC_LALT` |`KC_LOPT` |Left Alt (Option) |
|`KC_LGUI` |`KC_LCMD`, `KC_LWIN`|Left GUI (Windows/Command/Meta key) |
|`KC_RCTRL` |`KC_RCTL` |Right Control |
|`KC_RSHIFT`|`KC_RSFT` |Right Shift |
|`KC_RALT` |`KC_ALGR` |Right Alt (AltGr) |
|`KC_RALT` |`KC_ROPT`, `KC_ALGR`|Right Alt (Option/AltGr) |
|`KC_RGUI` |`KC_RCMD`, `KC_RWIN`|Right GUI (Windows/Command/Meta key)|
## International

View File

@ -31,11 +31,11 @@ For convenience, QMK includes some Mod-Tap shortcuts to make common combinations
|------------|-----------------------------------------------------------------|-------------------------------------------------------|
|`LCTL_T(kc)`|`CTL_T(kc)` |Left Control when held, `kc` when tapped |
|`LSFT_T(kc)`|`SFT_T(kc)` |Left Shift when held, `kc` when tapped |
|`LALT_T(kc)`|`ALT_T(kc)` |Left Alt when held, `kc` when tapped |
|`LALT_T(kc)`|`LOPT_T(kc)`, `ALT_T(kc)`, `OPT_T(kc)` |Left Alt when held, `kc` when tapped |
|`LGUI_T(kc)`|`LCMD_T(kc)`, `LWIN_T(kc)`, `GUI_T(kc)`, `CMD_T(kc)`, `WIN_T(kc)`|Left GUI when held, `kc` when tapped |
|`RCTL_T(kc)`| |Right Control when held, `kc` when tapped |
|`RSFT_T(kc)`| |Right Shift when held, `kc` when tapped |
|`RALT_T(kc)`|`ALGR_T(kc)` |Right Alt when held, `kc` when tapped |
|`RALT_T(kc)`|`ROPT_T(kc)`, `ALGR_T(kc)` |Right Alt when held, `kc` when tapped |
|`RGUI_T(kc)`|`RCMD_T(kc)`, `RWIN_T(kc)` |Right GUI when held, `kc` when tapped |
|`SGUI_T(kc)`|`SCMD_T(kc)`, `SWIN_T(kc)` |Left Shift and GUI when held, `kc` when tapped |
|`LCA_T(kc)` | |Left Control and Alt when held, `kc` when tapped |

View File

@ -42,11 +42,15 @@ We've tried to make QMK as easy to set up as possible. You only have to prepare
You will need to install MSYS2, Git, and the QMK CLI.
* Follow the installation instructions on the [MSYS2 homepage](http://www.msys2.org).
* Close any open MSYS2 terminals and open a new MSYS2 MinGW 64-bit terminal.
* Close any open MSYS2 terminals and open a new MSYS2 MinGW 64-bit terminal. NOTE: This is **not** the same as the MSYS terminal that opens when installation is completed.
After opening a new MSYS2 MinGW 64-bit terminal run these commands:
After opening a new MSYS2 MinGW 64-bit terminal, make sure `pacman` is up to date with:
pacman -S git python3-pip
pacman -Syu
You may be asked to close and reopen the window. Do this and keep running the above command until it says `there is nothing to do`. Then run the following:
pacman -S git mingw-w64-x86_64-toolchain mingw-w64-x86_64-python3-pip
python3 -m pip install qmk
### macOS
@ -62,9 +66,14 @@ After Homebrew is installed run these commands:
You will need to install Git and Python. It's very likely that you already have both, but if not, one of the following commands should install them:
* Debian / Ubuntu / Devuan: `apt-get install git python3 && python3 -m pip install qmk`
* Fedora / Red Hat / CentOS: `yum install git python3 && python3 -m pip install qmk`
* Arch: `pacman -S qmk`
* Debian / Ubuntu / Devuan: `sudo apt install git python3 python3-pip`
* Fedora / Red Hat / CentOS: `sudo yum install git python3 python3-pip`
* Arch / Manjaro: `sudo pacman -S git python python-pip python-setuptools libffi`
Install the global CLI to bootstrap your system:
`python3 -m pip install --user qmk` (on Arch-based distros you can also try the `qmk` package from AUR (**note**: it's maintained by a community member): `yay -S qmk`)
## 3. Run QMK Setup :id=set-up-qmk
@ -74,7 +83,13 @@ After installing QMK you can set it up with this command:
In most situations you will want to answer Yes to all of the prompts.
?> If you already know [how to use GitHub](getting_started_github.md), we recommend that you create your own fork and use `qmk setup <github_username>` to clone your personal fork. If you don't know what that means you can safely ignore this message.
?>**Note on Debian, Ubuntu and their derivatives**:
It's possible, that you will get an error saying something like: `bash: qmk: command not found`.
This is due to a [bug](https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=839155) Debian introduced with their Bash 4.4 release, which removed `$HOME/.local/bin` from the PATH. This bug was later fixed on Debian and Ubuntu.
Sadly, Ubuntu reitroduced this bug and is [yet to fix it](https://bugs.launchpad.net/ubuntu/+source/bash/+bug/1588562).
Luckily, the fix is easy. Run this as your user: `echo "PATH=$HOME/.local/bin:$PATH" >> $HOME/.bashrc && source $HOME/.bashrc`
?> If you already know [how to use GitHub](getting_started_github.md), we recommend that you create your own fork and use `qmk setup <github_username>/qmk_firmware` to clone your personal fork. If you don't know what that means you can safely ignore this message.
## 4. Test Your Build Environment

View File

@ -0,0 +1,53 @@
# Arm/ChibiOS Early Initialization :id=chibios-early-init
This page describes a part of QMK that is a somewhat advanced concept, and is only relevant to keyboard designers.
QMK uses ChibiOS as the underlying layer to support a multitude of Arm-based devices. Each ChibiOS-supported keyboard has a low-level board definition which is responsible for initializing hardware peripherals such as the clocks, and GPIOs.
Older QMK revisions required duplication of these board definitions inside your keyboard's directory in order to override such early initialization points; this is now abstracted into the following APIs, and allows usage of the board definitions supplied with ChibiOS itself. Check `<qmk_firmware>/lib/chibios/os/hal/boards` for the list of official definitions. If your keyboard needs extra initialization at a very early stage, consider providing keyboard-level overrides of the following APIs:
## `early_hardware_init_pre()` :id=early-hardware-init-pre
The function `early_hardware_init_pre` is the earliest possible code that can be executed by a keyboard firmware. This is intended as a replacement for the ChibiOS board definition's `__early_init` function, and is the equivalent of executing at the start of the function.
This is executed before RAM gets cleared, and before clocks or GPIOs are configured; any delays or preparation using GPIOs is not likely to work at this point. After executing this function, RAM on the MCU may be zero'ed. Assigning values to variables during execution of this function may be overwritten.
As such, if you wish to override this API consider limiting use to writing to low-level registers. The default implementation of this function can be configured to jump to bootloader if a `RESET` key was pressed, by ensuring `#define EARLY_INIT_PERFORM_BOOTLOADER_JUMP TRUE` is in the keyboard's `config.h` file.
To implement your own version of this function, in your keyboard's source files:
```c
void early_hardware_init_pre(void) {
// do things with registers
}
```
## `early_hardware_init_post()` :id=early-hardware-init-post
The function `early_hardware_init_post` is the next earliest possible code that can be executed by a keyboard firmware. This is executed after RAM has been cleared, and clocks and GPIOs are configured. This is intended as a replacement for the ChibiOS board definition's `__early_init` function, and is the equivalent of executing at the end of the function.
Much like `early_hardware_init_pre`, ChibiOS has not yet been initialized either, so the same restrictions on delays and timing apply.
If you wish to override this API, consider limiting functionality to register writes, variable initialization, and GPIO toggling. The default implementation of this function is to do nothing.
To implement your own version of this function, in your keyboard's source files:
```c
void early_hardware_init_post(void) {
// toggle GPIO pins and write to variables
}
```
## `board_init()` :id=board-init
The function `board_init` is executed directly after the ChibiOS initialization routines have completed. At this stage, all normal low-level functionality should be available for use (including timers and delays), with the restriction that USB is not yet connected. This is intended as a replacement for the ChibiOS board definition's `boardInit` function.
The default implementation of this function is to do nothing.
To implement your own version of this function, in your keyboard's source files:
```c
void board_init(void) {
// initialize anything that requires ChibiOS
}
```

View File

@ -1,5 +1,9 @@
# Converting a board to use the Proton C
Since the Proton C is a drop-in replacement for a Pro Micro we've made it easy to use. This page documents a handy automated process for converting keyboards, as well as documenting the manual process if you'd like to make use of Proton C features that aren't available on Pro Micros.
## Automatic Conversion
If a board currently supported in QMK uses a Pro Micro (or compatible board) and you want to use the Proton C, you can generate the firmware by appending `CONVERT_TO_PROTON_C=yes` (or `CTPC=yes`) to your make argument, like this:
make 40percentclub/mf68:default CTPC=yes
@ -8,13 +12,15 @@ You can add the same argument to your keymap's `rules.mk`, which will accomplish
This exposes the `CONVERT_TO_PROTON_C` flag that you can use in your code with `#ifdef`s, like this:
#ifdef CONVERT_TO_PROTON_C
```c
#ifdef CONVERT_TO_PROTON_C
// Proton C code
#else
#else
// Pro Micro code
#endif
#endif
```
Before being able to compile, you may get some errors about `PORTB/DDRB`, etc not being defined, so you'll need to convert the keyboard's code to use the [GPIO Controls](internals_gpio_control.md) that will work for both ARM and AVR. This shouldn't affect the AVR builds at all.
If you get errors about `PORTB/DDRB`, etc not being defined, so you'll need to convert the keyboard's code to use the [GPIO Controls](internals_gpio_control.md) that will work for both ARM and AVR. This shouldn't affect the AVR builds at all.
The Proton C only has one on-board LED (C13), and by default, the TXLED (D5) is mapped to it. If you want the RXLED (B0) mapped to it instead, add this like to your `config.h`:
@ -31,3 +37,54 @@ These are defaults based on what has been implemented for ARM boards.
| [Backlight](feature_backlight.md) | Forces [task driven PWM](feature_backlight.md#software-pwm-driver) until ARM can provide automatic configuration |
| USB Host (e.g. USB-USB converter) | Not supported (USB host code is AVR specific and is not currently supported on ARM) |
| [Split keyboards](feature_split_keyboard.md) | Not supported yet |
## Manual Conversion
To use the Proton C natively, without having to specify `CTPC=yes`, you need to change the `MCU` line in `rules.mk`:
```
MCU = STM32F303
```
Remove these variables if they exist:
* `BOOTLOADER`
* `EXTRA_FLAGS`
Finally convert all pin assignments in `config.h` to the stm32 equivalents.
| Pro Micro Left | Proton C Left | | Proton C Right | Pro Micro Right |
|-----------|----------|-|----------|-----------|
| `D3` | `A9` | | 5v | RAW (5v) |
| `D2` | `A10` | | GND | GND |
| GND | GND | | FLASH | RESET |
| GND | GND | | 3.3v | VCC <sup>1</sup> |
| `D1` | `B7` | | `A2` | `F4` |
| `D0` | `B6` | | `A1` | `F5` |
| `D4` | `B5` | | `A0` | `F6` |
| `C6` | `B4` | | `B8` | `F7` |
| `D7` | `B3` | | `B13` | `B1` |
| `E6` | `B2` | | `B14` | `B3` |
| `B4` | `B1` | | `B15` | `B2` |
| `B5` | `B0` | | `B9` | `B6` |
| `B0` (RX LED) | `C13` <sup>2</sup> | | `C13` <sup>2</sup> | `D5` (TX LED) |
You can also make use of several new pins on the extended portion of the Proton C:
| Left | | Right |
|------|-|-------|
| `A4`<sup>3</sup> | | `B10` |
| `A5`<sup>4</sup> | | `B11` |
| `A6` | | `B12` |
| `A7` | | `A14`<sup>5</sup> (SWCLK) |
| `A8` | | `A13`<sup>5</sup> (SWDIO) |
| `A15` | | RESET<sup>6</sup> |
Notes:
1. On a Pro Micro VCC can be 3.3v or 5v.
2. A Proton C only has one onboard LED, not two like a Pro Micro. The Pro Micro has an RX LED on `D5` and a TX LED on `B0`.
3. `A4` is shared with the speaker.
4. `A5` is shared with the speaker.
5. `A13` and `A14` are used for hardware debugging (SWD). You can also use them for GPIO, but should use them last.
6. Short RESET to 3.3v (pull high) to reboot the MCU. This does not enter bootloader mode like a Pro Micro, it only resets the MCU.

View File

@ -98,6 +98,7 @@
* [ISP Flashing Guide](pt-br/isp_flashing_guide.md)
* [ARM Debugging Guide](pt-br/arm_debugging.md)
* [I2C Driver](pt-br/i2c_driver.md)
* [SPI Driver](pt-br/spi_driver.md)
* [GPIO Controls](pt-br/internals_gpio_control.md)
* [Proton C Conversion](pt-br/proton_c_conversion.md)

View File

@ -8,7 +8,7 @@ There are actually separate functions that you can use there, depending on what
### `update_tri_layer(x, y, z)`
The first is the `update_tri_layer(x, y, z)` function. This function check to see if layers `x` and `y` are both on. If they are both on, then it runs on layer `z`. Otherwise, if both `x` and `y` are not both on (either only one is, or neither is), then it runs off layer `z`.
The first is the `update_tri_layer(x, y, z)` function. This function check to see if layers `x` and `y` are both on. If they are both on, then it turns on layer `z`. Otherwise, if both `x` and `y` are not both on (either only one is, or neither is), then it turns off layer `z`.
This function is useful if you want to create specific keys that have this functionality, but other layer keycodes won't do this.
@ -43,7 +43,7 @@ bool process_record_user(uint16_t keycode, keyrecord_t *record) {
```
### `update_tri_layer_state(state, x, y, z)`
The other function is `update_tri_layer_state(state, x, y, z)`. This function is meant to be called from they [`layer_state_set_*` functions](custom_quantum_functions.md#layer-change-code). This means that any time that you use a keycode to change the layer, this will be checked. So you could use `LT(layer, kc)` to change the layer and it will trigger the same layer check.
The other function is `update_tri_layer_state(state, x, y, z)`. This function is meant to be called from the [`layer_state_set_*` functions](custom_quantum_functions.md#layer-change-code). This means that any time that you use a keycode to change the layer, this will be checked. So you could use `LT(layer, kc)` to change the layer and it will trigger the same layer check.
The caveat to this method is that you cannot access the `z` layer without having `x` and `y` layers on, since if you try to activate just layer `z`, it will run this code and turn off layer `z` before you could use it.

View File

@ -46,9 +46,6 @@ An IDE that is popular with many C developers.
## Firmware
The software that controls your MCU.
## FLIP
Software provided by Atmel for flashing AVR devices. We generally recommend [QMK Flasher](https://github.com/qmk/qmk_flasher) instead, but for some advanced use cases FLIP is required.
## git
Versioning software used at the command line

View File

@ -99,6 +99,7 @@
* [ISP Flashing Guide](ru-ru/isp_flashing_guide.md)
* [ARM Debugging Guide](ru-ru/arm_debugging.md)
* [I2C Driver](ru-ru/i2c_driver.md)
* [SPI Driver](ru-ru/spi_driver.md)
* [WS2812 Driver](ru-ru/ws2812_driver.md)
* [GPIO Controls](ru-ru/internals_gpio_control.md)
* [Proton C Conversion](ru-ru/proton_c_conversion.md)

138
docs/spi_driver.md Normal file
View File

@ -0,0 +1,138 @@
# SPI Master Driver
The SPI Master drivers used in QMK have a set of common functions to allow portability between MCUs.
## AVR Configuration
No special setup is required - just connect the `SS`, `SCK`, `MOSI` and `MISO` pins of your SPI devices to the matching pins on the MCU:
|MCU |`SS`|`SCK`|`MOSI`|`MISO`|
|---------------|----|-----|------|------|
|ATMega16/32U2/4|`B0`|`B1` |`B2` |`B3` |
|AT90USB64/128 |`B0`|`B1` |`B2` |`B3` |
|ATmega32A |`B4`|`B7` |`B5` |`B6` |
|ATmega328P |`B2`|`B5` |`B3` |`B4` |
You may use more than one slave select pin, not just the `SS` pin. This is useful when you have multiple devices connected and need to communicate with them individually.
`SPI_SS_PIN` can be passed to `spi_start()` to refer to `SS`.
## ChibiOS/ARM Configuration
You'll need to determine which pins can be used for SPI -- as an example, STM32 parts generally have multiple SPI peripherals, labeled SPI1, SPI2, SPI3 etc.
To enable SPI, modify your board's `halconf.h` to enable SPI - both `HAL_USE_SPI` and `SPI_USE_WAIT` should be `TRUE`, and `SPI_SELECT_MODE` should be `SPI_SELECT_MODE_PAD`.
Then, modify your board's `mcuconf.h` to enable the SPI peripheral you've chosen -- in the case of using SPI2, modify `STM32_SPI_USE_SPI2` to be `TRUE`.
As per the AVR configuration, you may select any other standard GPIO as a slave select pin, and can be supplied to `spi_start()`.
Configuration-wise, you'll need to set up the peripheral as per your MCU's datasheet -- the defaults match the pins for a Proton-C, i.e. STM32F303.
`config.h` override | Description | Default Value
----------------------------|---------------------------------------------------------------|--------------
`#define SPI_DRIVER` | SPI peripheral to use - SPI1 => `SPID1`, SPI2 => `SPID2` etc. | `SPID2`
`#define SPI_SCK_PIN` | The pin to use for the SCK | `B13`
`#define SPI_SCK_PAL_MODE` | The alternate function mode for the SCK pin | `5`
`#define SPI_MOSI_PIN` | The pin to use for the MOSI | `B15`
`#define SPI_MOSI_PAL_MODE` | The alternate function mode for the MOSI pin | `5`
`#define SPI_MISO_PIN` | The pin to use for the MISO | `B14`
`#define SPI_MISO_PAL_MODE` | The alternate function mode for the MISO pin | `5`
## Functions
### `void spi_init(void)`
Initialize the SPI driver. This function must be called only once, before any of the below functions can be called.
---
### `bool spi_start(pin_t slavePin, bool lsbFirst, uint8_t mode, uint16_t divisor)`
Start an SPI transaction.
#### Arguments
- `pin_t slavePin`
The QMK pin to assert as the slave select pin, eg. `B4`.
- `bool lsbFirst`
Determines the endianness of the transmission. If `true`, the least significant bit of each byte is sent first.
- `uint8_t mode`
The SPI mode to use:
|Mode|Clock Polarity |Clock Phase |
|----|--------------------|-----------------------|
|`0` |Leading edge rising |Sample on leading edge |
|`1` |Leading edge rising |Sample on trailing edge|
|`2` |Leading edge falling|Sample on leading edge |
|`3` |Leading edge falling|Sample on trailing edge|
- `uint16_t divisor`
The SPI clock divisor, will be rounded up to the nearest power of two. This number can be calculated by dividing the MCU's clock speed by the desired SPI clock speed. For example, an MCU running at 8 MHz wanting to talk to an SPI device at 4 MHz would set the divisor to `2`.
#### Return Value
`false` if the supplied parameters are invalid or the SPI peripheral is already in use, or `true`.
---
### `spi_status_t spi_write(uint8_t data)`
Write a byte to the selected SPI device.
#### Arguments
- `uint8_t data`
The byte to write.
#### Return Value
`SPI_STATUS_TIMEOUT` if the timeout period elapses, or `SPI_STATUS_SUCCESS`.
---
### `spi_status_t spi_read(void)`
Read a byte from the selected SPI device.
#### Return Value
`SPI_STATUS_TIMEOUT` if the timeout period elapses, or the byte read from the device.
---
### `spi_status_t spi_transmit(const uint8_t *data, uint16_t length)`
Send multiple bytes to the selected SPI device.
#### Arguments
- `const uint8_t *data`
A pointer to the data to write from.
- `uint16_t length`
The number of bytes to write. Take care not to overrun the length of `data`.
#### Return Value
`SPI_STATUS_TIMEOUT` if the timeout period elapses, `SPI_STATUS_SUCCESS` on success, or `SPI_STATUS_ERROR` otherwise.
---
### `spi_status_t spi_receive(uint8_t *data, uint16_t length)`
Receive multiple bytes from the selected SPI device.
#### Arguments
- `uint8_t *data`
A pointer to the buffer to read into.
- `uint16_t length`
The number of bytes to read. Take care not to overrun the length of `data`.
#### Return Value
`SPI_STATUS_TIMEOUT` if the internal transmission timeout period elapses, `SPI_STATUS_SUCCESS` on success, or `SPI_STATUS_ERROR` otherwise.
---
### `void spi_stop(void)`
End the current SPI transaction. This will deassert the slave select pin and reset the endianness, mode and divisor configured by `spi_start()`.

70
docs/syllabus.md Normal file
View File

@ -0,0 +1,70 @@
# QMK Syllabus
This page helps you build up your QMK knowledge by introducing the basics first and guiding you to understanding all the concepts you need to know to be proficient with QMK.
# Beginning Topics
If you read nothing else you should read the documents in this section. After reading the [Tutorial](newbs.md) you should be able to create a basic keymap, compile it, and flash it to your keyboard. The remaining documents will flesh out your knowledge of these basics.
* **Learn How To Use QMK Tools**
* [Tutorial](newbs.md)
* [CLI](cli.md)
* [GIT](newbs_git_best_practices.md)
* **Learn About Keymaps**
* [Layers](feature_layers.md)
* [Keycodes](keycodes.md)
* The full list of keycodes you can use. Note that some may require knowledge found in the Intermediate or Advanced Topics.
* **Configuring IDEs** - Optional
* [Eclipse](other_eclipse.md)
* [VS Code](other_vscode.md)
# Intermediate Topics
These topics start to dig into some of the features that QMK supports. You don't have to read all of these documents, but some of the documents in the Advanced Topics section won't make sense if you skip over some of these.
* **Learn How To Configure Features**
<!-- * Configuration Overview FIXME(skullydazed/anyone): write this document -->
* [Audio](feature_audio.md)
* Lighting
* [Backlight](feature_backlight.md)
* [LED Matrix](feature_led_matrix.md)
* [RGB Lighting](feature_rgblight.md)
* [RGB Matrix](feature_rgb_matrix.md)
* [Tap-Hold Configuration](tap_hold.md)
* **Learn More About Keymaps**
* [Keymaps](keymap.md)
* [Custom Functions and Keycodes](custom_quantum_functions.md)
* Macros
* [Dynamic Macros](feature_dynamic_macros.md)
* [Compiled Macros](feature_macros.md)
* [Tap Dance](feature_tap_dance.md)
* [Combos](feature_combo.md)
* [Userspace](feature_userspace.md)
# Advanced Topics
Everything below here requires a lot of foundational knowledge. Besides being able to create keymaps using advanced features you should be familiar with using both `config.h` and `rules.mk` to configure options for your keyboard.
* **Maintaining Keyboards Within QMK**
* [Handwiring a Keyboard](hand_wire.md)
* [Keyboard Guidelines](hardware_keyboard_guidelines.md)
* [info.json Reference](reference_info_json.md)
* [Debounce API](feature_debounce_type.md)
* **Advanced Features**
* [Unicode](feature_unicode.md)
* [API](api_overview.md)
* [Bootmagic](feature_bootmagic.md)
* **Hardware**
* [How Keyboards Work](how_keyboards_work.md)
* [How A Keyboard Matrix Works](how_a_matrix_works.md)
* [Split Keyboards](feature_split_keyboard.md)
* [Stenography](feature_stenography.md)
* [Pointing Devices](feature_pointing_device.md)
* **Core Development**
* [Coding Conventions](coding_conventions_c.md)
* [Compatible Microcontrollers](compatible_microcontrollers.md)
* [Custom Matrix](custom_matrix.md)
* [Understanding QMK](understanding_qmk.md)
* **CLI Development**
* [Coding Conventions](coding_conventions_python.md)
* [CLI Development Overview](cli_development.md)

View File

@ -12,7 +12,7 @@ As of [PR#1359](https://github.com/qmk/qmk_firmware/pull/1359/), there is a new
#define PERMISSIVE_HOLD
```
This makes tap and hold keys (like Mod Tap) work better for fast typist, or for high `TAPPING_TERM` settings.
This makes tap and hold keys (like Mod Tap) work better for fast typists, or for high `TAPPING_TERM` settings.
If you press a Mod Tap key, tap another key (press and release) and then release the Mod Tap key, all within the tapping term, it will output the "tapping" function for both keys.
@ -35,7 +35,7 @@ To enable this setting, add this to your `config.h`:
#define IGNORE_MOD_TAP_INTERRUPT
```
Similar to Permissive Hold, this alters how the firmware processes input for fast typist. If you press a Mod Tap key, press another key, release the Mod Tap key, and then release the normal key, it would normally output the "tapping" function for both keys. This may not be desirable for rolling combo keys.
Similar to Permissive Hold, this alters how the firmware processes inputs for fast typists. If you press a Mod Tap key, press another key, release the Mod Tap key, and then release the normal key, it would normally output the "tapping" function for both keys. This may not be desirable for rolling combo keys.
Setting `Ignore Mod Tap Interrupt` requires holding both keys for the `TAPPING_TERM` to trigger the hold function (the mod).

View File

@ -162,6 +162,15 @@ The `process_record()` function itself is deceptively simple, but hidden within
At any step during this chain of events a function (such as `process_record_kb()`) can `return false` to halt all further processing.
After this is called, `post_process_record()` is called, which can be used to handle additional cleanup that needs to be run after the keycode is normally handled.
* [`void post_process_record(keyrecord_t *record)`]()
* [`void post_process_record_quantum(keyrecord_t *record)`]()
* [Map this record to a keycode]()
* [`void post_process_clicky(uint16_t keycode, keyrecord_t *record)`]()
* [`void post_process_record_kb(uint16_t keycode, keyrecord_t *record)`]()
* [`void post_process_record_user(uint16_t keycode, keyrecord_t *record)`]()
<!--
#### Mouse Handling

View File

@ -50,7 +50,7 @@ In that model you would emulate the input, and expect a certain output from the
# Tracing Variables :id=tracing-variables
Sometimes you might wonder why a variable gets changed and where, and this can be quite tricky to track down without having a debugger. It's of course possible to manually add print statements to track it, but you can also enable the variable trace feature. This works for both for variables that are changed by the code, and when the variable is changed by some memory corruption.
Sometimes you might wonder why a variable gets changed and where, and this can be quite tricky to track down without having a debugger. It's of course possible to manually add print statements to track it, but you can also enable the variable trace feature. This works for both variables that are changed by the code, and when the variable is changed by some memory corruption.
To take the feature into use add `VARIABLE_TRACE=x` to the end of you make command. `x` represents the number of variables you want to trace, which is usually 1.

Some files were not shown because too many files have changed in this diff Show More