more stable lock led process, added debugging code

This commit is contained in:
jpetermans 2017-04-15 14:37:55 -07:00
parent c0ec1756af
commit 046f1baf30

View File

@ -70,6 +70,8 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define BREATHE_LED_ADDRESS CAPS_LOCK_LED_ADDRESS #define BREATHE_LED_ADDRESS CAPS_LOCK_LED_ADDRESS
#endif #endif
#define DEBUG_ENABLED 1
/* ================= /* =================
* ChibiOS I2C setup * ChibiOS I2C setup
* ================= */ * ================= */
@ -171,11 +173,11 @@ static THD_FUNCTION(LEDthread, arg) {
chRegSetThreadName("LEDthread"); chRegSetThreadName("LEDthread");
uint8_t i, j, page; uint8_t i, j, page;
uint8_t control_register_word[2] = {0};//register address - byte to write uint8_t control_register_word[2] = {0};//2 bytes: register address, byte to write
uint8_t led_control_reg[0x13] = {0};//led control register start address + 0x12 bytes uint8_t led_control_reg[0x13] = {0};//led control register start address + 0x12 bytes
//persistent status variables //persistent status variables
uint8_t backlight_status, pwm_step_status, layer_status; uint8_t backlight_status, pwm_step_status, page_status;
//mailbox variables //mailbox variables
uint8_t temp, msg_type, msg_led; uint8_t temp, msg_type, msg_led;
@ -189,7 +191,7 @@ static THD_FUNCTION(LEDthread, arg) {
// initialize persistent variables // initialize persistent variables
backlight_status = 0; //start backlight off backlight_status = 0; //start backlight off
pwm_step_status = 4; //full brightness pwm_step_status = 4; //full brightness
layer_status = 0; //start frame 0 (all off/on) page_status = 0; //start frame 0 (all off/on)
while(true) { while(true) {
// wait for a message (asynchronous) // wait for a message (asynchronous)
@ -201,74 +203,89 @@ layer_status = 0; //start frame 0 (all off/on)
xprintf("--------------------\n"); xprintf("--------------------\n");
xprintf("mailbox fetch\nmsg: %X\n", msg); xprintf("mailbox fetch\nmsg: %X\n", msg);
xprintf("type: %X - led: %X\n", msg_type, msg_led); //test if msg_type is 1 or 2 bytes after mask xprintf("type: %X - led: %X\n", msg_type, msg_led);
switch (msg_type){ switch (msg_type){
case KEY_LIGHT: case KEY_LIGHT:
//TODO: lighting key led on keypress //TODO: lighting key led on keypress
break; break;
//turn on/off/toggle single led, msg_led = row/col of led
case OFF_LED: case OFF_LED:
//on/off/toggle single led, msg_led = row/col of led
xprintf("OFF_LED\n"); xprintf("OFF_LED\n");
set_led_bit(7, control_register_word, msg_led, 0); set_led_bit(7, control_register_word, msg_led, 0);
is31_write_data (7, control_register_word, 0x02); is31_write_data (7, control_register_word, 0x02);
if (layer_status > 0) {//check current led page to prevent double blink
if (page_status < 7) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7); is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7);
} }
layer_status = 7; page_status = 7;
break; break;
case ON_LED: case ON_LED:
xprintf("ON_LED\n"); xprintf("ON_LED\n");
set_led_bit(7, control_register_word, msg_led, 1); set_led_bit(7, control_register_word, msg_led, 1);
is31_write_data (7, control_register_word, 0x02); is31_write_data (7, control_register_word, 0x02);
if (layer_status > 7) {
if (page_status < 7) {//check current led page to prevent double blink
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7); is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7);
} }
layer_status = 7; page_status = 7;
break; break;
case TOGGLE_LED: case TOGGLE_LED:
xprintf("TOGGLE_LED\n"); xprintf("TOGGLE_LED\n");
set_led_bit(7, control_register_word, msg_led, 2); set_led_bit(7, control_register_word, msg_led, 2);
is31_write_data (7, control_register_word, 0x02); is31_write_data (7, control_register_word, 0x02);
if (layer_status > 7) { if (page_status > 7) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7); is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7);
} }
layer_status = 7; page_status = 7;
break; break;
case TOGGLE_ALL: case TOGGLE_ALL:
xprintf("TOGGLE_ALL\n"); xprintf("TOGGLE_ALL\n");
//msg_led = unused //msg_led = unused
is31_read_register(0, 0x00, &temp);//if first byte is on, then toggle frame 1 off is31_read_register(0, 0x00, &temp);//if first byte is on, then toggle frame 0 off
led_control_reg[0] = 0; led_control_reg[0] = 0;
if (temp==0) { if (temp==0 || page_status > 0) {
xprintf("all leds on"); xprintf("all leds on");
__builtin_memcpy(led_control_reg+1, all_on_leds_mask, 0x12); __builtin_memcpy(led_control_reg+1, all_on_leds_mask, 0x12);
} else { } else {
xprintf("all leds off"); xprintf("all leds off");
__builtin_memset(led_control_reg+1, 0, 0x12); __builtin_memset(led_control_reg+1, 0, 0x12);
} }
is31_write_data(0, led_control_reg, 0x13); is31_write_data(0, led_control_reg, 0x13);
if (layer_status > 0) { if (page_status > 0) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 0); is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 0);
} }
layer_status=0;
//maintain lock leds
if (host_keyboard_leds() & (1<<USB_LED_NUM_LOCK)) {
set_lock_leds(USB_LED_NUM_LOCK, 1);
}
if (host_keyboard_leds() & (1<<USB_LED_CAPS_LOCK)) {
set_lock_leds(USB_LED_CAPS_LOCK, 1);
}
page_status=0;
break; break;
case TOGGLE_BACKLIGHT: case TOGGLE_BACKLIGHT:
//msg_led = unused //msg_led = unused
//TODO: need to test tracking of active layer with layer_state from qmk //TODO: need to test tracking of active layer with layer_state from qmk
//TODO: this code still assumes on/off frame 0/1, combine this with
//toggle_all with 0,1,2 msg_leds for off/on/toggle-current?
xprintf("TOGGLE_BACKLIGHT\n"); xprintf("TOGGLE_BACKLIGHT\n");
backlight_status ^= 1; backlight_status ^= 1;
is31_read_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, &temp); is31_read_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, &temp);
layer_status = temp; page_status = temp;
page = backlight_status == 0 ? 0 : layer_status; page = backlight_status == 0 ? 0 : page_status;
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, page); is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, page);
break; break;
@ -279,10 +296,10 @@ layer_status = 0; //start frame 0 (all off/on)
if(temp == msg_led) { if(temp == msg_led) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7); is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7);
layer_status = 7; page_status = 7;
} else { } else {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, msg_led); is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, msg_led);
layer_status = msg_led; page_status = msg_led;
} }
break; break;
@ -301,8 +318,6 @@ layer_status = 0; //start frame 0 (all off/on)
case STEP_BRIGHTNESS: case STEP_BRIGHTNESS:
xprintf("TOGGLE_BACKLIGHT\n"); xprintf("TOGGLE_BACKLIGHT\n");
//led_msg = step pwm up or down //led_msg = step pwm up or down
//TODO: test step brightness code
//pwm_levels[] bounds checking, loop through array
switch (msg_led) { switch (msg_led) {
case 0: case 0:
if (pwm_step_status == 0) { if (pwm_step_status == 0) {
@ -327,8 +342,6 @@ layer_status = 0; //start frame 0 (all off/on)
for(i=0; i<8; i++) { for(i=0; i<8; i++) {
//first byte is register address, every 0x10 9 bytes is A-register pwm pins //first byte is register address, every 0x10 9 bytes is A-register pwm pins
pwm_register_array[0] = 0x24 + (i * 0x10); pwm_register_array[0] = 0x24 + (i * 0x10);
for(j=0; j<9; j++) {
}
is31_write_data(0,pwm_register_array,9); is31_write_data(0,pwm_register_array,9);
} }
break; break;
@ -365,6 +378,26 @@ layer_status = 0; //start frame 0 (all off/on)
*/ */
xprintf("--------------------\n"); xprintf("--------------------\n");
} }
#ifdef DEBUG_ENABLED
//debugging code - print full led/blink/pwm registers on each frame
for(i=0;i<8;i++) {
xprintf("page: %d", i);
for(j=0;j<0xB4;j++){
is31_read_register(i,j,&temp);
chThdSleepMilliseconds(1);
xprintf("%02X, ", temp);
if(j % 9 == 0){
xprintf("\n", temp);
if(j % 18 ==0){
xprintf("register", temp);
xprintf("\n", temp);
}
}
chThdSleepMilliseconds(1);
}
xprintf("\n", temp);
}
#endif
} }
} }
@ -376,46 +409,34 @@ void set_led_bit (uint8_t page, uint8_t *led_control_reg, uint8_t led_addr, uint
//returns 2 bytes led control register address and byte mask to write //returns 2 bytes led control register address and byte mask to write
uint8_t control_reg_addr, column_bit, column_byte, temp; uint8_t control_reg_addr, column_bit, column_byte, temp;
//
//first byte is led control register address 0x00 //first byte is led control register address 0x00
//msg_led tens column is pin#, ones column is bit position in 8-bit mask //msg_led tens column is pin#, ones column is bit position in 8-bit mask
chThdSleepMilliseconds(10);
xprintf("led_addr: %d ", led_addr);
control_reg_addr = ((led_addr / 10) % 10 - 1 ) * 0x02;// A-register is every other byte control_reg_addr = ((led_addr / 10) % 10 - 1 ) * 0x02;// A-register is every other byte
column_bit = 1<<(led_addr % 10 - 1); column_bit = 1<<(led_addr % 10 - 1);
is31_read_register(page,control_reg_addr,&temp);//need to maintain status of leds in this row (1 byte) is31_read_register(page,control_reg_addr,&temp);//need to maintain status of leds in this row (1 byte)
chThdSleepMilliseconds(10);
xprintf("col_bit: %X ", column_bit);
column_byte = temp; column_byte = temp;
chThdSleepMilliseconds(10);
xprintf("action: %X ", action);
switch(action) { switch(action) {
case 0: case 0:
xprintf("off-");
chThdSleepMilliseconds(10);
column_byte &= ~column_bit; column_byte &= ~column_bit;
break; break;
case 1: case 1:
xprintf("on-");
chThdSleepMilliseconds(10);
column_byte |= column_bit; column_byte |= column_bit;
break; break;
case 2: case 2:
xprintf("toggle-");
chThdSleepMilliseconds(10);
column_byte ^= column_bit; column_byte ^= column_bit;
break; break;
} }
//return word to be written in register
led_control_reg[0] = control_reg_addr; led_control_reg[0] = control_reg_addr;
led_control_reg[1] = column_byte; led_control_reg[1] = column_byte;
chThdSleepMilliseconds(10);
xprintf("set_bit row: %X set_bit col: %X\n", led_control_reg[0], led_control_reg[1]);
} }
void set_lock_leds(uint8_t lock_type, uint8_t led_on) { void set_lock_leds(uint8_t lock_type, uint8_t led_on) {
uint8_t page, led_addr; uint8_t page, led_addr, start, temp;
uint8_t led_control_write[2] = {0}; uint8_t led_control_write[2] = {0};
//TODO: consolidate control register to top level array vs. three scattered around //TODO: consolidate control register to top level array vs. three scattered around
@ -443,13 +464,13 @@ void set_lock_leds(uint8_t lock_type, uint8_t led_on) {
#endif #endif
} }
for(page=0; page<8; page++) { //set in led_controller.h //ignore frame0 if all leds are on or if option set in led_controller.h
//TODO: check if frame2 (or frame1, first byte all on), and ignore if true is31_read_register(0, 0x00, &temp);
//also if BACKLIGHT_OFF_LOCK_LED_OFF set start = (temp>0 || BACKLIGHT_OFF_LOCK_LED_OFF) ? 1 : 0;
for(page=start; page<8; page++) {
set_led_bit(page,led_control_write,led_addr,led_on); set_led_bit(page,led_control_write,led_addr,led_on);
xprintf("lock_led row: %X lock_led col%X\n", led_control_write[0], led_control_write[1]);
is31_write_data(page, led_control_write, 0x02); is31_write_data(page, led_control_write, 0x02);
chThdSleepMilliseconds(10);
} }
} }
@ -458,8 +479,10 @@ void write_led_page (uint8_t page, const uint8_t *user_led_array, uint8_t led_co
uint8_t row, col; uint8_t row, col;
uint8_t led_control_register[0x13] = {0};//led control register start address + 0x12 bytes uint8_t led_control_register[0x13] = {0};//led control register start address + 0x12 bytes
__builtin_memset(led_control_register,0,13);
for(i=0;i<led_count;i++){ for(i=0;i<led_count;i++){
row = ((user_led_array[i] / 10) % 10 - 1 ) * 2 + 1;//includes 1 byte shift for led register 0x00 address row = ((user_led_array[i] / 10) % 10 - 1 ) * 2 + 1;// 1 byte shift for led register 0x00 address
col = user_led_array[i] % 10 - 1; col = user_led_array[i] % 10 - 1;
led_control_register[row] |= 1<<(col); led_control_register[row] |= 1<<(col);
@ -490,7 +513,7 @@ void led_controller_init(void) {
/* initialise IS31 chip */ /* initialise IS31 chip */
is31_init(); is31_init();
//set Display Option Register so all pwm intensity is controlled from Frame 1 //set Display Option Register so all pwm intensity is controlled from Frame 0
is31_write_register(IS31_FUNCTIONREG, IS31_REG_DISPLAYOPT, IS31_REG_DISPLAYOPT_INTENSITY_SAME); is31_write_register(IS31_FUNCTIONREG, IS31_REG_DISPLAYOPT, IS31_REG_DISPLAYOPT_INTENSITY_SAME);
//TODO: test new init pwm loop //TODO: test new init pwm loop